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We propose a scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave
interference. The required quantum control is provided by ap /2-p-p /2 atom interferometer with an integrated
atom lens system. The lens system is developed such that it allows simultaneous control over the atomic
wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with
two-dimensional87Rb wave packets through numerical simulations of the scheme in a practical parameter
space. Prospects for experimental realizations of the lithography scheme are also discussed.
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I. INTRODUCTION

The last few decades have seen a great deal of increased
activity toward the development of a broad array of litho-
graphic techniquesf1,2g. This is because of their fundamen-
tal relevance across all technological platforms. These tech-
niques can be divided into two categories: parallel
techniques using light and serial techniques using matter.
The optical lithography techniques have the advantage of
being fast because they can expose the entire pattern in par-
allel. However, these techniques are beginning to reach the
limits imposed upon them by the laws of optics, namely, the
diffraction limit f3g. The current state of the art in optical
lithography that is used in industry can achieve feature sizes
on the order of hundreds of nanometers. Efforts are being
made to push these limits back by using shorter-wavelength
light such as x raysf2g, but this presents problems of its own.
The serial lithography techniques, such as electron beam li-
thographyf1g, can readily attain a resolution on the order of
tens of nanometers. However, because of their serial nature
these methods are very slow and do not provide a feasible
platform for the industrial mass fabrication of nanodevices.

A different avenue for lithography presents itself out of
recent developments in the fields of atomic physics and atom
optics, namely, the experimental realization of a Bose-
Einstein condensatesBECd f4,5g and the demonstration of
the atom interferometerf6–12g. In essence, these develop-
ments provide us with the tools needed in order to harness
the wave nature of matter. This is advantageous for lithogra-
phy because the comparatively smaller de Broglie wave-
length of atoms readily allows for a lithographic resolution
on the nanometer scale. The atom interferometer provides a
means of interfering matter waves in order to achieve lithog-
raphy on such a scale. The BEC, on the other hand, provides
a highly coherent and populous source with which to per-
form this lithography in a parallel fashion. The opportunity
thus presents itself to combine the enhanced resolution of
matter interferometry with the high throughput of traditional
optical lithography.

It should be noted that, although there has been research
activity on atom lithographyf13–15g for a number of years,
most of the work has involved using standing waves of light
as optical masks for the controlled deposition of atoms on a
substrate. The primary limitations of using such optical

masks are that the lithographic pattern cannot be arbitrary
and that the resolution of the pattern is limited to the 100 nm
scale. Since our scheme uses the atom interferometer, how-
ever, it allows for pattern formation by self-interference of a
matter wave, and is thus unhampered by the inherent limita-
tions of the optical mask technique.

In this paper we seek to demonstrate theoretically the use
of the atom interferometer as a platform for nanolithography
by proposing a technique that allows for the manipulation of
a single-atom wave packet so as to achieve two-dimensional
lithography of an arbitrary pattern on the single-nanometer
scale. To do this our scheme employs a lens system along
one arm of the interferometer that performs Fourier imaging
f3g of the wave-packet component that travels along that
arm. By investigating such a technique for a single atom
wave packet, we hope to establish the viability of using a
similar technique for a single BEC wave packet, which
would allow for truly high-throughput lithography.

The paper is organized as follows. Section II presents an
overview of the proposed technique. Sections III and IV pro-
vide a theoretical analysis of the atom interferometer itself
and our proposed imaging system, respectively. Section V is
devoted to some practical considerations of the setup and its
parameter space, and Sec. VI gives the results of numerical
simulations. Finally, we touch upon the issue of replacing the
single-atom wave packet with the macroscopic wave func-
tion of a BEC in Sec. VII. Appendixes A and B show some
of the steps in the derivations.

II. PROPOSED INTERFEROMETER

A. Principles of operation

In a p /2-p-p /2 atom interferometersAI d, which was first
theoretically proposed by Bordef6g and experimentally dem-
onstrated by Kasevich and Chuf7g, an atom beam is released
from a trap and propagates in free space until it encounters a
p /2 pulse, which acts as a 50-50 beam splitterf16–22g. The
split components then further propagate in free space until
they encounter ap pulse, which acts as a mirror so that the
trajectories of the split beam components now intersect. The
beams propagate in free space again until they encounter
anotherp /2 pulse at their point of intersection, which now
acts as a beam mixer. Because of this beam mixing, any
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phase shiftf introduced between the beams before they are
mixed will cause an interference to occur such that the ob-
served intensity of one of the mixed beams at a substrate will
be proportional to 1+cosf, much as in the Mach-Zehnder
interferometerf23g from classical optics. For our scheme we
propose the same type of interferometer, but with a single
atom released from the trap instead of a whole beam.

Now, if we introduce an arbitrary, spatially varying phase
shift fsx,yd between the two arms of the interferometer be-
fore they mix, the intensity of their interference pattern as
observed on a substrate will be proportional to 1
+cosfsx,yd. Thus, in our system, we use an appropriate
choice of fsx,yd in order to form an arbitrary, two-
dimensional pattern. This quantum phase engineeringsal-
ready demonstrated for BECsf24,25gd is achieved by using
the ac-Stark effect so thatIsx,yd~fsx,yd, where Isx,yd is
the intensity of an incident light pulse.

Also, in order to achieve interference patterns on the
nanoscale,fsx,yd must itself be at nanometer resolution.
However, reliable intensity modulation of a light pulse is
limited to the submicrometer range due to diffraction effects.
One way to address this is by focusing the wave packet after
it is exposed to the submicrometer resolution phase shift
fsx,yd, thereby further scaling downfsx,yd to nanometer
resolution after it is applied to the wave packet. Our scheme
achieves this scaling via an atom lens system.

Additionally, just as with a Gaussian laser beam, exposing
a single Gaussian wave packet to a spatially varying phase
shift fsx,yd will cause it to scatter. In order for both the
phase-shifted and non-phase-shifted components of the wave
packet to properly interfere, our lens system is also used to
perform Fourier imagingf30g such that, at the substrate, the
phase-shifted component of the wave packet is an unscat-
tered Gaussian that is properly aligned with its non-phase-
shifted counterpart and has the phase informationfsx,yd still
intact. Indeed, the lens system, which is created using the
ac-Stark effect, serves the double purpose of scaling down
the phase informationfsx,yd from submicrometer resolution
to single-nanometer resolution and neutralizing the wave-
packet scattering caused by the same phase shiftfsx,yd.

B. Schematic

In our overall scheme, represented by Fig. 1, the atoms
are treated asL systemsf26–33g sinset Bd and are prepared
in the ground stateu1l. A single-atom trapf34–36g is used to
release just one atomic wave packet along thez axis. After
traveling a short distance, the wave packet is split by ap /2
pulse into internal statesu1l and u3l. The state-u3l component
gains additional momentum along they axis and separates
from the state-u1l component after they both travel further
along thez axis. Next, ap pulse causes the two components
to transition their internal states and thereby reflect their tra-
jectories. The component along the top arm is now in the
original ground stateu1l and proceeds to be exposed to the
lens system. The lenses of the lens system are pulses of light
that intercept the state-u1l component of the wave packet at
different times. By modulating their spatial intensity in the
x-y plane, these pulses of light are tailored to impart a par-

ticular phase pattern in thex-y plane to the wave-packet
component that they interact with via the ac-Stark effect. As
shown in inset B, Fig. 1, the detuning of the light that the
lenses are composed of is several times larger for stateu3l
than for stateu1l. The lenses can therefore be considered to
have a negligible ac-Stark effect on the state-u3l wave-packet
component as compared to the state-u1l component. This is
important, because in a practical situation the separation be-
tween the wave packets foru1l and u3l may be small enough
so that the transverse extent of the lens pulses could overlap
both wave packets.

The first light pulse is intensity modulated to carry the
phase information of the first lens of the lens system. It then
intercepts the state-u1l wave-packet component and adds the
phasef1sx,yd. After some time the state-u1l component has
evolved due to the first lens such that it is an appropriate size
for exposure to the phase information corresponding to the
arbitrary pattern imagesinset Ad. Another light pulse is in-
tensity modulated to carry the phase information of both the
second lens and the inverse cosine of the arbitrary pattern.
The pulse intercepts the state-u1l component and adds the
additional phasef2sx,yd. After some time a third light pulse
is prepared and applied to the state-u1l component to add a
phase off3sx,yd, which act as the third lens of the lens
system. Soon after, the finalp /2 pulse mixes the trajectories
of the wave-packet components. A chemically treated wafer
is set to intercept the state-u1l component in thex-y plane.
Due to the mixing caused by the lastp /2 pulse, only a part
of what is now the state-u1l component has gone through the
lens system. Because of the lens system, it arrives at the
wafer with a phase that is a scaled-down version of the im-
age phasefPsx,yd=arccosPsx,yd. The other part of what is
now the state-u1l component did not go through the lens
system. There is therefore a phase difference offPsx,yd be-
tween the two parts of the state-u1l component and the wave
packet strikes the wafer in an interference pattern propor-
tional to 1+cosfarccosPsx,ydg=1+Psx,yd. The impact with
the wafer alters the chemically treated surface, and the pat-
tern is developed through chemical etching.

As a note, one preparation for the wafer is to coat it with
a self-assembled monolayerf37g. However, Hill et al. f38g
demonstrate an alternate approach using hydrogen passiva-
tion, which may be better suited for lithography at the single-
nanometer scale due to its inherent atomic-scale granularity.

Finally, note that the coated wafer may reflect as well as
scatter the pulses of the lens system. The phase fronts of the
wave packets may potentially be distorted if exposed to these
reflections and scatterings. However, this problem can be
overcome easily as follows. During the time window over
which the lens pulses are applied, a small mirror is placed at
an angle in front of the wafer, so as to deflect the lens pulses
in a harmless direction. This will also have the added benefit
of not exposing the wafer to the lens pulses at all. Right after
the last lens pulse has been applied and deflected, the mirror
will be moved out of the way, thus allowing the atomic
waves to hit the wafer surface.

III. ANALYSIS OF THE INTERFEROMETER „p /2-p-p /2…

A. Formalism

As explained in the previous section, we consider the be-
havior of a single-atomic wave packet in our formulation of
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the problem. Also, in order to understand and simulate the AI
f6–12g properly, the atom must be modeled both internally
and externally. It is the internal evolution of the atom while
in a laser field that allows for the splitting and redirecting of
the beam to occur in the AI. However, the internal evolution
is also dependent on the external state. Also, while the exter-
nal state of the atom accounts for most of the interference
effects which result in the arbitrary pattern formation, the
internal state is responsible for some nuances here as well.

In following the coordinate system as shown in Fig. 1, we
write the initial external wave function as

uCesrW,t = 0dl =
1

sÎp
expS− urWu2

2s2 D s1d

whererW=xî+y ĵ.

Internally, the atom is modeled as a three-levelL system
f26–33g sas shown in Fig. 1, inset Bd and is assumed to be
initially in state u1l:

uCistdl = c1stdu1l + c2stdu2l + c3stdu3l, s2d

where we considerc1s0d=1, c2s0d=0, c3s0d=0. Statesu1l
and u3l are metastable states, while stateu2l is an excited
state.

As will become evident later, in some cases it is more
expedient to express the atom’s wave function ink space
f39g. To express our wave function, then, in terms of momen-
tum, we first use Fourier theory to reexpress the external
wave function as

FIG. 1. A single-atomic wave packet is released from the atom trap.s2d The wave packet is split using ap /2 pulse.s3d The split
components are reflected by ap pulse.s4ad The spatial light modulatorsSLMd modulates a light pulse such that it will act as the first lens
of the atom lens system.s4bd The light pulse intercepts the wave-packet component that is in stateu1l and imparts a phase signaturef1sx,yd
via the ac-Stark effect.s5ad Now the SLM modulates a second light pulse such that it will impart both the phase information corresponding
to the arbitrary imageharccosfPsx,ydgj and the phase information of the second lens of the lens system.s5bd The second light pulse
intercepts the same wave-packet component as the first one and imparts the phase signaturef2sx,yd. s6ad The SLM modulates a third light
pulse, preparing it to act as the third lens of the lens system.s6bd The third light pulse intercepts the same wave-packet component as the
other two pulses and imparts a phasef3sx,yd. s7d Both wave-packet components are mixed along the two trajectories by ap /2 pulse.s8d
A chemically treated wafer intercepts the state-u1l component so that an interference pattern forms on the wafer proportional to 1
+cosharccosfPsx,ydgj=1+Psx,yd. Inset A: The imagePsx,yd that is to be transferred ultimately to the wafer. Inset B: The internal energy
states of the wave packet modeled as aL system. The light pulses used for the atom lenses have a much larger detuning for ground stateu3l
than they do for ground state-u1l so that they effectively only interact with the state-u1l component of the wave packet. Thep /2 pulses and
the p pulse use light that is largely detuned for both ground states.
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uCesx,y,tdl =
1

2p
E E uFespx,py,tdlupxlupyldpxdpy, s3d

where we letupxl=eispx/"dx and upyl=eispy/"dy. The complete
wave function is simply the outer product of the internal and
external statesfEqs.s2d and s3dg:

uCsx,y,tdl =
1

2p
E E fC1spx,py,tdu1,px,pyl + C2spx,py,td

3u2,px,pyl + C3spx,py,tdu3,px,pylgdpxdpy, s4d

whereCnspx,py,td=cnstduFespx,py,tdl. In position space, the
outer product gives

uCsrW,tdl = c1stdu1,CesrW,tdl + c2stdu2,CesrW,tdl

+ c3stdu3,CesrW,tdl. s5d

B. State evolution in free space

The free-space evolution of a wave function is fully
derived in Appendix A. Presented here are simply the
results cast in our particular formalism. For the free-
space HamiltonianH=eeon=1

3 fspx
2+py

2d /2m+"vngun,px,pyl
3kn,px,pyudpxdpy, if the wave function is known at timet
=0, then after a duration of timeT in free space, the wave
function becomes

uCsrW,t = Tdl

=
1

2p
E E fC1spx,py,0de−ifspx

2+py
2d/2m"+v1gTu1,px,pyl

+ C2spx,py,0de−ifspx
2+py

2d/2m"+v2gTu2,px,pyl

+ C3spx,py,0de−ifspx
2+py

2d/2m"+v3gTu3,px,pylgdpxdpy,

s6ad

or

uCsrW,t = Tdl = e−iv1Tc1s0du1,CesrW,Tdl + e−iv2Tc2s0d

3u2,CesrW,Tdl + e−iv3Tc3s0du3,CesrW,Tdl. s6bd

C. State evolution in p and p /2 pulse laser fields

The electromagnetic fields encountered by the atom at
points 2, 3, and 7 in Fig. 1 that act as thep /2, p, andp /2
pulses are each formed by two lasers that are counterpropa-
gating in they-z plane parallel to they axis. We use the
electric dipole approximation to write the Hamiltonian in
these fields as

H =E E o
n=1

3 Spx
2 + py

2

2m
+ "vnDun,px,pylkn,px,pyudpxdpy

− e0«W ·
EW A0

2
feisvAt−kAŷ+fAd + e−isvAt−kAŷ+fAdg

− e0«W ·
EW B0

2
feisvBt+kBŷ+fBd + e−isvBt+kBŷ+fBdg, s7d

whereEW A0 and EW B0 are vectors denoting the magnitude and
polarization of the fields traveling in the1 and −y directions,
respectively,«W is the position vector of the electron, ande0 is
the electron charge. Refer to Appendix B for the complete
derivation of the wave function evolution in these fields.
Only the results are presented here.

If the atom begins completely in stateu1,CesrW ,tdl then
after a timeT of evolving in the above described fields, the
result is

uCsrW,t = Tdl = cosSV

2
TDu1,CesrW,0dl

− ieisvB−vAdT+isfB−fAd sinSV

2
TDu3,CesrW,0dle−iskA+kBdy,

s8d

where we have used the definitions given in Sec. III A. We
see that for ap pulsesT=p /Vd, Eq. s8d becomes

uCsx,y,t = p/Vdl = − ieisvB−vAdp/V+isfB−fAd

3u3,Cesx,y,0dle−iskA+kBdy, s9d

while for a p /2 pulsefT=p / s2Vdg, Eq. s8d yields

uC„x,y,t = p/s2Vd…l

=
1
Î2

u1,Cesx,y,0dl − ieisvB−vAdp/2V+isfB−fAd

3
1
Î2

u3,Cesx,y,0dle−iskA+kBdy. s10d

Similarly, if the atom begins completely in stateu3,CesrW ,tdl,
the wave function after a timeT becomes

uCsx,y,t = Tdl = − ieisvA−vBdT+isfA−fBd sinSV

2
TD

3u1,Cesx,y,0dleiskA+kBdy + cosSV

2
TD

3u3,Cesx,y,0dl, s11d

so that for ap pulse, Eq.s11d gives

uCsx,y,t = p/Vdl = − ieisvA−vBdp/V+isfA−fBd

3u1,Cesx,y,0dleiskA+kBdy, s12d

and for ap /2 pulse, Eq.s11d becomes

uC„x,y,t = p/s2Vd…l = − ieisvA−vBdp/2V+isfA−fBd 1
Î2

3u1,Cesx,y,0dleiskA+kBdy

+
1
Î2

u3,Cesx,y,0dl. s13d

D. State evolution through the whole interferometer

To see the effects of phase explicitly, we make use of the
analysis that we have done for the state evolution of the
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wave packet. Take our initial wave packetuCl to have initial
conditions as discussed in Sec. III A. At timet=0 the first
p /2 pulse equally splitsuCl into two componentsuCal and
uCbl such that

uCal = − ieisvB−vAdp/2V+isfB1−fA1d 1
Î2

u3,Cesx,y,0dle−iskA+kBdy,

s14ad

uCbl =
1
Î2

u1,Cesx,y,0dl, s14bd

where we used Eq.s8d. After a timet=T0 of free spacefEq.
s6bdg and then ap pulse, Eqs.s8d and s11d yield

uCal = − eisvA−vBdp/2V+isfA2−fA1+fB1−fB2d−iv3T0
1
Î2

3u1,Cesx,y − y0,T0dl, s15ad

uCbl = − ieisvB−vAdp/V+isfB2−fA2d−iv1T0
1
Î2

u3,Cesx,y,T0dl

3e−iskA+kBdy. s15bd

The uCal component becomes shifted in space byy0 due
to the momentum it gained in the +y direction from thep
pulse. Now another zone of free space for a timeT0 fEq. s7dg
followed by the finalp /2 pulse fusing Eqs.s8d and s11dg
forms

uCal = − eisvA−vBdp/2V+isfA2−fA1+fB1−fB2d−isv1+v3dT0

3
1

2
u1,Cesx,y − y0,2T0dl

+ ieisfA2−fA1−fA3+fB1−fB2+fB3d−isv1+v3dT0

3
1

2
u3,Cesx,y − y0,2T0dle−iskA+kBdy, s16ad

uCbl = − eisvB−vAdp/2V+isfB2−fB3−fA2+fA3d−isv1+v3dT0

3
1

2
u1,Cesx,y − y0,2T0dl

− ieisvB−vAdp/V+isfB2−fA2d−isv1+v3dT0

3
1

2
u3,Cesx,y − y0,2T0dle−iskA+kBdy. s16bd

Now the uCbl component is spatially aligned with the
uCal component. However, another split occurs because both
of these components are partially in internal stateu3l. After
some further timeT1 in free space, stateu3l has drifted fur-
ther in the +y direction. The substrate can now intercept the
two internal states of the total wave function in separate lo-
cations. We write the state-u1l and -u3l wave functions as

uC1l = −
1

2
seisvB−vAdp/2V+isfB2−fB3−fA2+fA3d

+ eisvA−vBdp/2V+isfA2−fA1+fB1−fB2dd

3u1,Cesx,y − y0,2T0 + T1dle−isv1+v3dT0, s17ad

uC3l = i
1

2
seisfA2−fA1−fA3+fB1−fB2+fB3d − eisvB−vAdp/V+isfB2−fA2dd

3 u3,Cesx,y − y0 − y1,2T0 + T1dle−iskA+kBdy−isv1+v3dT0.

s17bd

These have populations

kC1uC1l =
1

2
f1 + cossf0dg, kC3uC3l =

1

2
f1 − cossf0dg,

s18d

where f0=sp /VdsvA−vBd−fA1+fB1+2fA2−2fB2−fA3

+fB3. We see that the state populations are functions of the
phase differences of the laser fields. Since we can choose
these phase differences arbitrarily, we can populate the states
arbitrarily. If we choose the phases, for example, such that
f0 is some multiple of 2p, then the wave-packet population
will end up entirely in internal stateu1l.

IV. ARBITRARY IMAGE FORMATION

If, however, between thep pulse and the secondp /2
pulse we apply a spatially varying phase shiftfPsrWd to uCal,
but keepf0 as a multiple of 2p, then the populations in Eqs.
s20d become instead

kC1uC1l =
1

2
h1 + cosffPsrWdgj,

kC3uC3l =
1

2
h1 − cosffPsrWdgj. s19d

Therefore, if we letfPsrWd=arccosfPsrWdg, wherePsrWd is an
arbitrary pattern normalized to 1, the stateu1l population will
be

kC1uC1l =
1

2
f1 + PsrWdg. s20d

If the substrate at 8 in Fig. 1 intercepts just this state, the
population distribution will be in the form of the arbitrary
image. Over time, depositions on the substrate will follow
the population distribution, and thereby physically form the
image on the substrate.

A. Imparting an arbitrary, spatially varying phase shift for
arbitrary image formation

We now review how to do such phase imprintingf24,25g
to a single wave packet using the ac-Stark effect. First, con-
sider the Schrödinger equationsSEd for the wave packet ex-
pressed in position space:
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i"
]uCsrW,tdl

]t
=

− "2

2m
¹2uCsrW,tdl + VsrWduCsrW,tdl. s21d

If we consider a very short interaction timet with the poten-
tial VsrWd, we find

i"
]uCsrW,t + tdl

]t
< VsrWduCsrW,t + tdl s22ad

⇒ uCsrW,t + tdl < uCsrW,tdle−si/"dVsrWdt. s22bd

Thus, we see that an arbitrary phase shiftfPsrWd is im-
parted on the wave packet in position space by choosing
VsrWd=s" /tdfPsrWd. Although this would give the negative of
the desired phase, it makes no difference because it is the
cosine of the phase that gives the interference pattern.

In order to create the arbitrary potential needed to impart
the arbitrary phase shift, we use the ac-Stark effectslight
shiftd. As illustrated in Fig. 1 at 4b, 5b, and 6b, the atom will
be in the internal stateu1l. If exposed to a detuned laser field
that only excites theu1l→ u2l transition, the eigenstates be-
come perturbed such that their energies shift in proportion to
the intensity of the laser field. A spatially varying intensity
will yield a spatially varying potential energy. Specifically, in
the limit thatg/d→0, whereg is proportional to the square
root of the laser intensity andd is the detuning, it is found
that the energy of the ground state is approximately
"g2/ s4dd. To impart the pattern phase, then, we subject the
atomic wave packet at 4b, 5b, and 6b in Fig. 1 to a laser field
that has an intensity variation in thex-y plane such that

g2srWd = s4d/tdfPsrWd = s4d/tdarccosfPsrWdg, s23d

wherePsrWd is the arbitrary pattern normalized to 1 andt is
the interaction time.

B. The need for a lens system

The need for a lens system for the atomic wave packet
arises due to two separate considerations. First, there is a
need for expanding and focusing the wave packet in order to
shrink down the phase pattern imparted at 5b in Fig. 1. We
have shown above how the phase pattern is imparted using
an intensity variation on an impinging light pulse. However,
due to the diffraction limit of light, the scale limit of this
variation will be on the order of 100 nm. This will cause the
interference at 8 to occur on that scale. To reach a smaller
scale, we require a lens system that allows expansion and
focusing of the wave packet to occur in the transverse plane.
Using such a system, we could, for example, expand the
wave packet by two orders of magnitude prior to 5b, impart
the phase pattern at 5b, and then focus it back to its original
size by the time it reaches 8. The interference would then
occur on the scale of 1 nm.

The second consideration that must be made is that an
arbitrary phase shiftfsx,yd introduced at 5b, if it has any
variation at all in the transverse plane, will cause the wave
packet traveling along that arm of the AI to alter its momen-
tum state. Any free-space evolution after this point will make
the wave packet distort or go off trajectrory, causing a noisy

interference or even eliminating interference at 8 all together.
Our lens system, then, must accomplish two objectives

simultaneously:s1d allow for an expansion and focusing of
the wave packet to occur ands2d have the wave packet prop-
erly aligned and undistorted when it reaches 8. To do this, we
employ techniques similar to those developed in classical
Fourier opticsf3g. First we develop a diffraction theory for
the two-dimensionals2Dd quantum-mechanical wave packet;
then we use the theory to set up a lens system that performs
spatial Fourier transforms on the wave packet in order to
achieve the two above stated objectives.

C. Development of the quantum-mechanical wave-function
diffraction theory

Consider the 2D SE in freespace

i"
]uCsrW,tdl

]t
=

− "2

2m
S ]2

]x2 +
]2

]y2DuCsrW,tdl. s24d

By inspection, we see that it is linear and shift independent.
If we can then find the impulse response of this “system” and
convolve it with an arbitrary input, we can get an exact ana-
lytical expression for the output. To proceed, we first try to
find the transfer function of the system.

Using the method of separation of variables, it is readily
shown that all solutions of the systemsthe 2D SE in free
spaced can be expressed as linear superpositions of the fol-
lowing function:

CsrW,td = AefikW·rW−sh/2mduku2tg s25d

where A is some constant andkW =kxî +kyĵ can take on any
values. Now let us take some arbitrary input to our system at
time t=0 and express it in terms of its Fourier components:

uCinsrWdl =
1

2p
E uFinskWdleikW·rWdkW . s26d

We can then evolve each Fourier component for a timeT
by using Eq.s25d to get the output

uCoutsrWdl =
1

2p
E uFinskWdleifkW·rW−s"/2mdukWu2TgdkW

=
1

2p
E suFinskWdle−is"/2mdukWu2TdeikW·rWdkW

=
1

2p
E uFoutskWdleikW·rWdkW . s27d

It follows that

uFoutskWdl = uFinskWdle−is"/2mdukWu2T. s28d

Our transfer function, then, for a free-space system of
time durationT is

HskWd = e−is"/2mdukWu2T. s29d

After taking the inverse Fourier transform, we find the
impulse response to be

hsrWd = − iS m

"T
Deism/2"TdurWu2. s30d
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Finally, convolving this with some input to the system at
time t=0, uCinsrWdl, gives the output at timet=T, uCoutsrWdl, to
be

uCoutsrWdl = − iS 1

2p

m

"T
Deism/2"TdurWu2E uCinsrW8dl

3eism/2"TdurW8u2e−ism/"TdrW·rW8drW8. s31d

This expression is analogous to theFresnel diffraction
integral from classical optics.

D. Fourier transform lens scheme

Consider now the following.
s1d Take as input some wave functionuCsrWdl, and use the

light shift to apply a “lens”sin much the same way as we
show above how to apply the arbitrary pattern phased such
that it becomes

uCsrWdle−ism/2"TdurWu2.

s2d Pass it through the free-space system for a timeT
using the above derived integral to get

− iS 1

2p

m

"T
Deism/2"TdurWu2E uCsrW8dle−ism/"TdrW·rW8drW8

s3d Now use the light shift again to create another “lens”
where the phase shift ise−ifsm/2"TdurWu2−p/2g so that we are left
with

S 1

2p

m

"T
D E uCsrW8dle−ism/"TdrW·rW8drW8.

We see that this is simply a scaled version of the Fourier
transformsFTd of the input. This lens system, then, is such
that

uCoutsrWdl = S 1

2p

m

"T
DUFinS m

"T
rWDL , s32d

whereuFinl is the FT ofuCinl.

E. Using the FT lens scheme to create a distortion-free
expansion and focusing system for applying the pattern phase

In order to achieve our desired goals of doing expansion
and focusing and preventing distortion, we propose the sys-
tem illustrated in Fig. 2sad. We first input our Gaussian wave
packet into a FT scheme with a characteristic time parameter
T=TA. We will then get the Fourier transform of the input
salso a Gaussiand scaled bym/ s"TAd. Then, we give the
wave packet a phase shift that corresponds to the desired
interference patternspattern phased and put it through an-
other FT scheme with the same time parameterTA. The wave
function is now the convolution of the original input with the
pattern phase. Finally, a third FT scheme is used withT
=TB so that the output is the same as the wave function just
before the second FT scheme, but is now reflected about the
origin and scaled bym/ s"TBd instead ofm/ s"TAd. The pat-
tern phase, therefore, has been scaled down by a factor of

TA/TB. Since bothTA and TB can be chosen arbitrarily, we
can, in principle, scale down the pattern phase by orders of
magnitude. If, for example, the pattern phase is first imparted
on a scale of,100 nm, we can chooseTA/TB to be 100 so
that at the output of our lens system, it is on a scale of
,1 nm. By scaling down the pattern phase, we can scale
down the interference pattern at point 8 in Fig. 1.

Within the context of the interferometer, our lens system
is placed at 4b, 5b, and 7 in Fig. 1. Now, since the system
provides us with the desired output immediately in time after
the final lensflens 3b in Fig. 2sadg, this final lens, the final
p /2 pulse, and the substrate 6 all need to be adjacent. If they
are not, the wave packet will undergo extra free-space evo-
lution and may distort. However, such a geometry is difficult
to achieve experimentally so we propose a modification to
the lens systemfFig. 2sbdg. Specifically, we can move the
lens 3b in Fig. 2sad to occur immediately before lens 2a, as
long as we rescale it to account for the different wave-packet
size at that location. We call the rescaled version 3b8, which
is the same as 3b except for the parameterTA in place ofTB.
We can then place the substrate at 8 in Fig. 2sad to be where
the lens 3b previously was; that is, a timeTB away from lens
3a. The finalp /2 pulse can occur anywhere between lens 3a
and the substrate, as long as it is far enough away from the
substrate to allow sufficient time for the state-u3l component
to separate from the state-u1l component. To avoid disturbing
the requisite symmetry of the AI, we accomplish this by
choosingTB to be sufficiently large while leaving the final
p /2 pulse itself in its original location. This geometry will
allow the substrate to intercept the state-u1l component ex-
clusively and at precisely the right moment such that it does
not undergo too little or too much free-space evolution with-
out having any of the finalp /2 pulse, final lens, or substrate
adjacent. Finally, we can simplify the lens system’s imple-
mentation if we combine the lenses that are adjacent. Lenses
1b, 2a, 3b8, andfPsrWd can be combined into lensa; lenses
2b and 3a can be combined into lensb. Explicitly, lensa has
phase shift

fasrWd = − S 3m

2"TA
DurWu2 + p − fPsrWd s33d

and lensb has phase shift

fbsrWd = − S m

2"TA
+

m

2"TB
DurWu2 +

p

2
. s34d

Figure 2scd shows the implementation of the lens system
within the context of the whole AI.

A cause for concern may arise in the fact that with the
lens system in place, the part of the wave packet that travels
along the arm without the lens will be interfering not with a
phase-modified version of itself, but with a phase-modified
Fourier transform of itself. That is, the output of the lens
system is a phase-modified Fourier transform of its input. As
such, the effective width of the wave packet coming from the
lens system may be significantly larger than the effective
width of that coming from the arm without lenses, thus caus-
ing a truncation of the pattern formation around the edges.
This problem is addressed by selectingTB such that the wave
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FIG. 2. sAd The lens system. Each lens is actually a pulse of light with a transverse intensity modulation. Between lenses 1a and 1b and
2a and 2b are free-space regions of time durationTA, while between lenses 3a and 3b there is a free-space region of durationTB. Lenses 1a
and 2a give the wave function a phasef1a=f2a=−sm/2"TAdurWu2, lenses 1b and 2b impart a phasef1b=f2b=−sm/2"TAdurWu2+p /2, lens 3a
gives a phasef3a=−sm/2"TBdurWu2, and lens 3b gives a phasef3b=−sm/2"TBdurWu2+p /2. sBd The lens system fromsAd rearranged. The input
and output are still the same, but the output is no longer immediately preceded by a lens. Lens 3b is the same as lens 3b fromsAd except
for TA in place ofTB so that it gives a phase shift off3b8=−sm/2"TAdurWu2+p /2. sCd The modified lens system in context. Lensesa andb
are composites of the lenses from the system ofsBd. Between lenses 1a anda is a free-space region of time lengthTA, as well as between
lensesa andb. Between lensb and the substrate is a free-space region of time durationTB. Values offasrWd andfbsrWd are as in Eqs.s33d
and s34d, respectively.
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packet from the lens system is scaled to have an effective
width equivalent to or smaller than the wave packet from the
other arm. Also, because of the Fourier transform, the wave
packet coming from the lens system, even without an added
pattern phase, may have a different phase signature from the
wave packet coming from the other arm. Regarding this is-
sue, our numerical experiments show that after free-space
propagation for a time on the order of the time scale deter-
mined as practicalssee Sec. Vd, the phase difference between
the original wave packet and its Fourier transform is very
small over the span of the effective width of the wave packet.
Thus, the effect of this phase noise on the interference pat-
tern is negligible.

V. SOME PRACTICAL CONSIDERATIONS

A. Wave-packet behavior

The behavior of the wave packet primarily has implica-
tions for the time and wave-packet effective width param-
eters of the lithography scheme. As mentioned earlier, the
scale limit of the intensity variation that creates the pattern
phase when it is first applied is,10−7 m. The lens system
then further reduces the scale of the pattern phase by a factor
of TA/TB. To achieve lithography features on the scale of
,1 nm, this ratio needs to be,100. However, we must also
take into consideration the extent of the entire intensity
variation. In other words, referring to Fig. 2scd, the effective
width of the wave packet at lensa must be large enough to
accommodate the entire pattern on the light pulse bearing the
phase pattern information. We assume that this dimension
will be on the order of a millimeter. We know that the wave
packet at lensa is a scaled Fourier transform of the wave
packet immediately before lens 1a, so that its effective width
at lensa is "TA/msin. This must be on the order of 10−3 m.
Also, another way in which the time parameters are restricted
is by the total amount of time that the atom spends in the AI.

Now, as shown earlier, it is the state-u1l component in our
scheme that will form the desired interference pattern. The
substrate must therefore intercept this component exclusive
of the state-u3l component. Fortunately, the state-u3l compo-
nent will have an additional velocity in they direction due to
photon recoil so that the two states will separate if given
enough time. Also recall that each wave-packet state after the
final p /2 pulse is composed of two elements, one that went
through the lens system and one that did not, such that the
elements that traveled along the arm without the lens system
will have larger effective widthsssince the output of the lens
system is smaller than its inputd. The two states will be suf-
ficiently separated, then, when the state-u3l component has
traveled far enough in the +y direction after the finalp /2
pulse such that there is no overlap of the larger effective
widths. Since we know that photon recoil gives the state-u3l
component an additional momentum of 2"k in the +y direc-
tion, we havemv=2"k. Also, it can be shown that the effec-
tive width of a wave packet after passing through free space
for a time T is sÎ1+sT/td, where t=ms /" and s is the
original effective width. Therefore, for sufficient spatial
separation of the statessassuming that the time between the

final p /2 pulse and the substrate is on the order ofTBd we
needv3TB*sinÎ1+sTB/td.

To summarize, our restrictions are

TA & 10 s, TB & 10−2TA,

and

"TA

msin
* 10−3 m,

2"

m
TB * sinÎ1 +S "TB

msin
D .

After using some simple algebra, we find that the first
three restrictions are satisfied if we apply the following

sin ø 10−5 m, , sin/TA & 10−6 m/s TB & 10−2TA.

We can, for example, choosesin=10−5 m, TA,10 s, TB
,10−1 s. A simple check shows that these choices also sat-
isfy the fourth restriction.

Finally, since our proposed lithography scheme involves
the use of a single atom at a time, it entails the drawback of
being very slow. To make this type of lithography truly prac-
tical, a Bose-Einstein condensatef4,5g would have to be used
instead of a single-atomic wave packet.

B. Proposed87Ru levels and transitions for the nanolithography
scheme

For practical implementation of our three-level atom, we
use theD1 transitions in87Rb f40g. Figure 3 illustrates. One
of the restrictions is that, in order to be able to neglect spon-
taneous emission, we need for each single transition

FIG. 3. The poposed transition scheme. We consider 52S1/2sF
=1,m=1d;u1l, 52P1/2sF8=2,m=0d;u2l, and 52S1/2sF=2,
m=−1d;u1l, where the quantization axis corresponds to theŷ di-
rection in Fig. 1.s−-polarized light excites theu1l↔ u2l transition
and s+-polarized light excites theu2l↔ u3l transition. Both lasers
are detuned by 680 MHz. For thep /2, p, and p /2 pulses, the
above mentioned two transitions are simultaneously excited. For the
light-shift-based lens system, as shown in the picture, a different
transition from the stateu1l to the sublevel 52P1/2sF8=2,m=1d is
used, andp-polarized light is applied. Since this field is highly
detuned from theF=2↔F8=2 transitions, the light shift foru3l can
be neglected.
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Sg0

d
D2

3 G 3 t ! 1, s35d

whereg0 is the Rabi frequency,d is the detuning,G is the
decay rate, andt is the interaction time. Both the Raman
pulse scheme and the light shift scheme also require

g0 ! d. s36d

We have the following relation:

g0,max
2 = S Imax

Isat
DG2. s37d

If we assumeIsat=3 mW/cm2, Imax=2 mW/mm2, and G
=3.333107 s−1, we find thatg0,max<8.63109 Hz.

We choose the relevant RamanL transition levels to be
u1l;5 2S1/2sF=1,m=1d, u2l;5 2P1/2sF=2,m=0d, and
5 2S1/2sF=2,m=−1d;u3l, with the quantization axis being
in the ŷ direction of Fig. 1. The energy difference between
the levels u1l and u2l is 6.8 GHz. Theu1l→ u2l and u2l
→ u3l transitions are performed by simultaneously applying
s−- ands+-polarized fields. The two ground statesu1l andu3l
have equal and oppositeg factors, so that they will experi-
ence the same force for a given magnetic field gradient used
for slowing them. For the ac-Stark shift, we apply
p-polarized light that couplesu1l to theF8=2,m=1 excited
state. Because this field is highly detuned from theF
=2↔F8=2 transition, the corresponding light shift of level
u3l can be neglected.

In order to satisfy the constraint that the Rabi frequency
be much less than the detuning, we chooseg0=68 MHz. This
is well below the maximum limit calculated above.

As far as the interaction time for thep /2 and p pulse
scheme, it is the Raman Rabi frequency that is of interest:

V =
g0

2

2d
. s38d

Using this in Eq.s36d, we get

2
V

d
3 G 3 t ! 1

⇒Vt !
d

2G
. s39d

Plugging in the chosen value ford and the typical value of
33.33 MHz forG, we find thatVt!10.2. We can satisfy this
restraint by choosingVt=p for thep pulse and half as much
for the p /2 pulse, giving a pulse duration oft=p /V
<924 ns for ap pulse andt<462 ns for ap /2 pulse.

For the light shift we use the samep-polarized excitation
of state u1l→5 2P1/2sF8=2,m=1d as shown in Fig. 3. The
time constraint in this case is

g0
2

4d
t = 2p. s40d

This gives an interaction time oft<3.7 ms. Ideally, the
light shift pulse will only interact with the wave packet in
stateu1l. This may actually be possible if we chooseTA to be

large enough such that the two states gain enough of a trans-
verse separation. If, as by example above, we chooseTA
,10 s, then the separation between the two states will be on
the order of a centimeter and there will be virtually no over-
lap between the two components of the wave packet in the
separate arms. The light pulse could then simply intercept
only stateu3l. If, however, the situation is such that the states
are overlapping, then stateu1l will also experience the light
shift, but it will be about a factor of ten less because of the
detuning being approximately ten times larger for it than for
the state-u3l transition.

VI. NUMERICAL EXPERIMENTS

The numerical implementation of our lithography scheme
was done by distributing the wave packets across finite
meshes and then evolving them according to the Schrödinger
equation. This evolution was done in both position and mo-
mentum space according to expediency. To go between the
two domains, we used two-dimensional Fourier transform
and inverse Fourier transform algorithms.

The initial wave packet was taken in momentum space
and completely in internal stateu1l. Specifically, the wave
packet was given by the Fourier transform of Eq.s1d:

uFeskW,t = 0dl =Î s

Îp
expS− ukWu2s2

2
D . s41d

The evolution of the wave packets in thep and p /2
pulses was done in momentum space in order to be able to
account for the different detunings that result for each mo-
mentum component due to the Doppler shift. Specifically, we
numerically solved Eq.sB15d for the different components of
the k-space wave packet mesh, then applied the inverse of
the transformation matrix given by Eq.sB9d to go to the
original basis.

Outside of the lens system, the free-space evolution of the
wave packets was also done in momentum space. This was
achieved easily by using Eqs.sA4d. Within the lens system,
however, it was more computationally efficient to use Eq.
s31d for the free-space evolution because of the need to apply
the lenses in position space. The results of using Eq.s32d
were initially cross-checked with the results of using Eqs.
sA4d and were found to agree.

Figure 4sad is a targetedsarbitraryd pattern. Figures 4sbd
and 4scd demonstrate the formation of the arbitrary pattern
by interference of the state-u1l wave packets at the output of
the interferometer. Both figures were the result of applying
the same arbitrary pattern phase, but Fig. 4sbd was formed
without any shrinking implementedsi.e., TA=TBd. Figure
4scd, however, demonstrates the shrinking ability of the lens
system by yielding a version of Fig. 4sbd that is scaled by a
factor of 2sTA/TB=2d. The length scales are in arbitrary units
due to the use of naturalized units for the sake of computa-
tional viability.

VII. SUGGESTIONS FOR EXTENSION TO BEC

As mentioned above, in order to make the lithography
scheme truly practical, a Bose-Einstein condensate is re-
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quired in place of the single atom. Indeed, the self-
interference of a BEC has already been demonstrated
f41,42g. The difficulty in using the BEC for controlled imag-
ing, however, arises from the nonlinear term in the Gross-
Pitaevskii equationsGPEd. Our lens system, for example,
would not be valid as it was developed from the linear SE.

One approach to getting around this problem is to try to
eliminate the nonlinear term in the GPE. Specifically, the
GPE for the BEC takes the form

i"
]C

]t
= S− "2

2m
¹2 + V + U0uCu2DC, s42d

where the nonlinear term coefficient isU0=4p"2a/m anda
is the scattering length for the atom. It has been demon-
strated for87Rb that the scattering length can be tuned over a
broad range by exposing the BEC to magnetic fields of vary-
ing strength near Feshbach resonancesf43,44g. The relation-

ship between the scattering length and the applied magnetic
field B when near a Feshbach resonance can be written as

a = abgS1 −
D

B − Bpeak
D , s43d

where abg is the background scattering length,Bpeak is the
resonance position, andD=Bzero−Bpeak. Setting B=Bzero
would therefore set the scattering length to zero and elimi-
nate the nonlinear term in the GPE. While the atom-atom
interaction may not be completely eliminated in reality due
to the fluctuation in density that we wish to effect through
the lens system, it is worth investigating if it could be made
to be negligible over an acceptable range. We could then use
our previously developed lens system to perform the imaging
and thereby interfere a large number of atoms simulta-
neously. Alternatively, one must redevelop the design of the
lenses and the imaging optics as applied to the equation of
motion for a BECfEq. s42dg for a nonzero value ofU0. This
effort is in progress.
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APPENDIX A: STATE EVOLUTION IN FREE SPACE

In free space, the Hamiltonian can be expressed in the
momentum domain as

H =E E o
n=1

3 Spx
2 + py

2

2m
+ "vnDun,px,pylkn,px,pyudpxdpy,

sA1d

wherevn is the frequency corresponding to the eigenenergy
of internal stateunl. For a single momentum componentspx
=px0 andpy=py0d, the Hamiltonian for the total evolution in
momentum space is given by

H = 3
px0

2 + py0
2

2m
+ "v1 0 0

0
px0

2 + py0
2

2m
+ "v2 0

0 0
px0

2 + py0
2

2m
+ "v3

4 .

sA2d

Using this in the SE, we get the equations of the ampli-
tude evolution in momentum space:

Ċ1spx0,py0,td = −
i

"
Spx0

2 + py0
2

2m
+ "v1DC1spx0,py0,td,

Ċ2spx0,py0,td = −
i

"
Spx0

2 + py0
2

2m
+ "v2DC2spx0,py0,td,

sA3d

FIG. 4. sad A targeted arbitraryse.g., a tic-tac-toe board hered
image.sbd The arbitrary image is now formed with the lens system
in place, but without any scaling. We see that it is a more complex
pattern than just a simple periodic structure such as sinusoidal
fringes.scd The same image as insbd is formed with the lens system
still in place, but a scaling factor of 2 has been used to shrink the
pattern.
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Ċ3spx0,py0,td = −
i

"
Spx0

2 + py0
2

2m
+ "v3DC3spx0,py0,td.

These yield the solutions

C1spx0,py0,td = C1spx0,py0,0de−ifspx0
2 +py0

2 d/2m"+v1gt,

C2spx0,py0,td = C2spx0,py0,0de−ifspx0
2 +py0

2 d/2m"+v2gt, sA4d

C3spx0,py0,td = C3spx0,py0,0de−ifspx0
2 +py0

2 d/2m"+v3gt.

We see that if the wave function is known at timet=0,
then after a duration of timeT in free space, the wave func-
tion becomes

uCsrW,t = Tdl

=
1

2p
E E fC1spx,py,0de−ifspx

2+py
2d/2m"+v1gTu1,px,pyl

+ C2spx,py,0de−ifspx
2+py

2d/2m"+v2gTu2,px,pyl

+ C3spx,py,0de−ifspx
2+py

2d/2m"+v3gTu3,px,pylgdpxdpy.

sA5d

We can also write it as

uCsrW,t = Tdl = e−iv1Tc1s0du1,CesrW,Tdl + e−iv2Tc2s0d

3u2,CesrW,Tdl + e−iv3Tc3s0du3,CesrW,Tdl.

sA6d

APPENDIX B: STATE EVOLUTION IN p AND p /2 PULSE
LASER FIELDS

The electromagnetic fields encountered by the atom at
points 2, 3, and 7 in Fig. 1 that act as thep andp /2 pulses
are each formed by two lasers that are counterpropagating in
the y-z plane parallel to they axis. We will refer to the laser

propagating in the +y direction asEW A, and the one propagat-

ing in the −y direction asEW B. In deriving the equations of
motion under this excitation, we make the following assump-
tions: s1d the laser fields can be treated semiclassicallyf45g,
s2d the intensity profiles of the laser fields forming thep and
p /2 pulses remain constant over the extent of the atomic
wave packet,s3d the wavelengths of the lasers are signifi-
cantly larger than the separation distance between the

nucleus and electron of the atom,s4d EW A excites only the

u1l↔ u2l transition andEW B only the u3l↔ u2l transition,s5d
EW A and EW B are far detuned from the transitions that they

excite, ands6d EW A andEW B are of the same intensity.
Using assumptionss1d ands2d, we write the laser fields as

EW A = EW A0 cossvAt − kAŷ + fAd

=
EW A0

2
feisvAt−kAŷ+fAd + e−isvAt−kAŷ+fAdg sB1d

and

EW B = EW B0 cossvBt + kBŷ + fBd

=
EW B0

2
feisvBt+kBŷ+fBd + e−isvBt+kBŷ+fBdg sB2d

whereEW A0 and EW B0 are vectors denoting the magnitude and
polarization of their respective fields. Keeping in mind that
our wave function is expressed in the momentum domain,
we take position as an operator.

The Hamiltonian here is expressed as the sum of two
parts:H=H0+H1. The first part corresponds to the noninter-
action energy:

H0 =E E o
n=1

3 Spx
2 + py

2

2m
+ "vnDun,px,pylkn,px,pyudpxdpy.

sB3d

The second part accounts for the interaction energy, for
which we use assumptions3d from above to make the elec-
tric dipole approximation and get

H1 = − e0«W ·
EW A0

2
feisvAt−kAŷ+fAd + e−isvAt−kAŷ+fAdg

− e0«W ·
EW B0

2
feisvBt+kBŷ+fBd + e−isvBt+kBŷ+fBdg sB4d

where«W is the position vector of the electron, ande0 is the
electron charge. Now, seeing that expressions of the form

knu«W ·EW A0unl and knu«W ·EW B0unl are zero, and using assumption
s4d, we can express Eq.sB4d as

H1 =E E F"gA

2
su1,px,pylk2,px,pyu + u2,px,pylk1,px,pyud

3feisvAt−kAŷ+fAd + e−isvAt−kAŷ+fAdg +
"gB

2
su3,px,pyl

3k2,px,pyu + u2,px,pylk3,px,pyudfeisvBt+kBŷ+fBd

+ e−isvBt+kBŷ+fBdgGdpxdpy, sB5d

where we let gA=k1u«W ·EW A0u2l=k2u«W ·EW A0u1l and gB

=k3u«W ·EW B0u2l=k2u«W ·EW B0u3l. Finally, we can use the identities
f39g

eikŷ = o
n
E E un,px,pylkn,px,py − "kudpxdpy, sB6ad

e−ikŷ = o
n
E E un,px,pylkn,px,py + "kudpxdpy, sB6bd

and the rotating wave approximationf45g in Eq. sB5d to give
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H1 =E E F"gA

2
eisvAt+fAdu1,px,pylk2,px,py + "kAu

+
"gA

2
e−isvAt+fAdu2,px,py + "kAlk1,px,pyu +

"gB

2
eisvBt+fBd

3u3,px,py + "kA + "kBlk2,px,py + "kAu +
"gB

2
e−isvBt+fBd

3u2,px,py + "kAlk3,px,py + "kB + "kAuGdpxdpy. sB7d

We note that the full interaction between the internal
statesu1l, u2l, andu3l occurs across groups of three different
momentum components:upx,pyl, upx,py+"kAl, and upx,py
+"kA+"kBl. This can be understood physically in terms of
photon absorption and emission and conservation of momen-
tum. Keeping in mind assumptions4d, if an atom begins in

stateu1,px0,py0l and absorbs a photon from fieldEW A, it will
transition to internal stateu2l because it has become excited,
but it will also gain the momentum of the photons"kAd trav-
eling in the +y direction. It will therefore end up in state
u2,px0,py0+"kAl. Now the atom is able to interact with field

EW B, which can cause stimulated emission of a photon with
momentum"kB in the −y direction. If such a photon is emit-
ted, the atom itself will gain an equal momentum in the
opposite direction, bringing it into external stateupx0,py0

+"kA+"kBl. The atom will also make an internal transition
to stateu3l because of the deexcitation. The total state will
now be u3,px0,py0+"kA+"kBl. We thereby see that our
mathematics is corroborated by physical intuition.

Getting back to the Hamiltonian, we look at the general
case of one momentum grouping so that we get in matrix
form H=H0+H1 from Eqs.sB3d and sB7d:

H = 3
px

2 + py
2

2m
+ "v1

"gA

2
eisvAt+fAd 0

"gA

2
e−isvAt+fAd px

2 + spy + "kAd2

2m
+ "v2

"gB

2
e−isvBt+fBd

0
"gB

2
eisvBt+fBd px

2 + spy + "kA + "kBd2

2m
+ "v3

4 . sB8d

In order to remove the time dependence we apply some transformationQ f39g of the form

Q = 3eisu1t+f1d 0 0

0 eisu2t+f2d 0

0 0 eisu3t+f3d 4 , sB9d

so that the SE becomes

i"
]uC̃l

]t
= H̃uC̃l, sB10d

whereuC̃l=QuCl and H̃=QHQ−1+ i"s]Q/]tdQ−1. The matrix representation is

H̃ = 3
px

2 + py
2

2m
+ "v1 − "u1

"gA

2
eisvA+u1−u2dt+isfA+f1−f2d 0

"gA

2
e−isvA+u1−u2dt−isfA+f1−f2d px

2 + spy + "kAd2

2m
+ "v2 − "u2

"gB

2
e−isvB+u3−u2dt−isfB+f3−f2d

0
"gB

2
eisvB+u3−u2dt+isfB+f3−f2d px

2 + spy + "kA + "kBd2

2m
+ "v3 − "u3

4 . sB11d

Choosingu1=−vA, u2=0, u3=−vB, f1=−fA, f2=0, andf3=−fB, Eq. sB11d becomes
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H̃ = 3
E1spx,pyd + "v1 + "vA

"gA

2
0

"gA

2
E2spx,pyd + "v2

"gB

2

0
"gB

2
E3spx,pyd + "v3 + "vB

4 , sB12d

where we have taken

E1spx,pyd =
px

2 + py
2

2m
, sB13ad

E2spx,pyd =
px

2 + spy + "kAd2

2m
, sB13bd

E3spx,pyd =
px

2 + spy + "kA + "kBd2

2m
. sB13cd

In order to further simplify the analysis, we set the zero
energy atE1spx0,py0d+"v1+"vA for some specific momen-
tum group withpx=px0 and py=py0. Also, sincevA and vB
can be chosen independently, we can letE3spx0,py0d+"v3

+"vB=E1spx0,py0d+"v1+"vA. With the energies thus set,
Eq. sB12d becomes

H̃ = 3
0

"gA

2
0

"gA

2
− d

"gB

2

0
"gB

2
0

4 , sB14d

whered=fE1spx0,py0d+"v1+"vAg−fE2spx0,py0d+"v2g. Us-
ing this Hamiltonian in Eq.sB10d, we get the equations of
motion as

C̃
˙

1spx0,py0,td = − i
gA

2
C̃2spx0,py0 + "kA,td, sB15ad

C̃
˙

2spx0,py0 + "kA,td = − i
gA

2
C̃1spx0,py0,td + idC̃2spx0,py0

+ "kA,td − i
gB

2
C̃3spx0,py0 + "kA

+ "kB,td, sB15bd

C̃
˙

3spx0,py0 + "kA + "kB,td = − i
gB

2
C̃2spx0,py + "kA,td.

sB15cd

Assumptions5d allows us to make the adiabatic approxi-

mation so that we can setC̃
˙

2spx0,py0,td<0, and assumption

s6d gives usgA=gB=g0. EquationssB15d then simplify to

C̃
˙

1spx0,py0,td = − i
g0

2

4d
C̃1spx0,py0,td

− i
g0

2

4d
C̃3spx0,py0 + "kA + "kB,td,

sB16ad

C̃
˙

3spx0,py0 + "kA + "kB,td = − i
g0

2

4d
C̃1spx0,py0,td

− i
g0

2

4d
C̃3spx0,py0 + "kA + "kB,td,

sB16bd

where we have chosen to neglect stateC2 from here on due
to the adiabatic approximation. We can now use another
transformation on this system to make it more tractable. Let

C5 1spx0,py0,td = C̃1spx0,py0,tdeisg0
2/4ddt, sB17ad

C5 3spx0,py0 + "kA + "kB,td = C̃3spx0,py0 + "kA + "kB,tdeisg0
2/4ddt.

sB17bd

The system in Eqs.sB16d then becomes

C5̇ 1spx0,py0,td = − i
g0

2

4d
C5 3spx0,py0 + "kA + "kB,td,

sB18ad

C5̇ 3spx0,py0 + "kA + "kB,td = − i
g0

2

4d
C5 1spx0,py0,td.

sB18bd

Solving this and reversing the transformations of Eqs.
sB17d and sB9d, we arrive at

C1spx0,py0,td = C1spx0,py0,0dcosSV

2
tD

− ieisvA−V/2dt+ifAFC3spx0,py0 + "kA

+ "kB,0de−isvB−V/2dt−ifB sinSV

2
tDG ,

sB19ad
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C3spx0,py0 + "kA + "kB,td

= − ieisvB−V/2dt+ifB

3FC1spx0,py0,0de−isvA−V/2dt−ifA sinSV

2
tDG

+ C3spx0,py0 + "kA + "kB,0dcosSV

2
tD , sB19bd

where we letV=g0
2/2d. It should be noted, however, that

these solutions were arrived at only for the specific momen-

tum group wherepx=px0 and py=py0. This was the case
where both laser fields were equally far detuned. Other mo-
mentum groups will have slightly different solutions due to
the Doppler shift, which causes the detunings to be per-
turbed. For a more accurate description, we need to numeri-
cally solve each momentum group’s original three equations
of motion without making any approximations. This is what
we do in our computational model. For a basic phenomeno-
logical understanding of the interferometer, however, it is
sufficient to assume that the above analytical solution is ac-
curate for all momentum components.
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