
Available online at www.sciencedirect.com
www.elsevier.com/locate/optcom

Optics Communications 280 (2007) 311–316
Angular directivity of diffracted wave in Bragg-mismatched
readout of volume holographic gratings

A. Heifetz *, J.T. Shen, S.C. Tseng, G.S. Pati, J.-K. Lee, M.S. Shahriar

Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, United States

Received 3 March 2007; received in revised form 12 August 2007; accepted 15 August 2007
Abstract

We investigated theoretically and experimentally angular directivity of a diffracted beam in volume holographic gratings. We mea-
sured the angular direction of the diffracted beam as a function of Bragg-angle deviation of the read beam and showed that the exper-
imental result agrees well with the Ewald sphere vector model (ESVM). We also showed that the Kogelnik’s coupled-wave theory (CWT)
is correct in predicting the diffraction efficiency, but is incomplete in its description of the direction of the diffracted wave. We show that
the ESVM and the CWT theories taken together produce a self-consistent mathematical model of wave propagation inside the gratings
that is confirmed with experimental results. The proper model for the direction of the output beam as presented here is important in
developing theoretical models of image propagation through thick gratings for holographic imaging and correlation applications.
� 2007 Elsevier B.V. All rights reserved.
Holographic optical correlators offer potential advanta-
ges in speed for image processing applications, because of
the inherent parallelism in optics [1,2]. An efficient imple-
mentation of a holographic correlator requires that the
device performance be invariant to translations of the tar-
get in the field of view [3–5]. The underlying physics of
shift-invariant correlation is Bragg-mismatched diffraction
from holographic gratings. In designing shift-invariant
holographic correlators, it is important to predict the exact
angular direction of the diffracted beam in Bragg-mis-
matched readout of gratings. The direction of the diffracted
beam is also important in developing the generic imaging
properties of thick gratings [6,7].

In this paper, we derive the angular directivity using the
Ewald sphere vector model (ESVM) [8–10] that matches
with the experimental data very well. We also show that
the angular direction of the diffracted wave in off-Bragg
incidence is not predicted correctly within the framework
of Kogelnik’s coupled-wave theory (CWT) [11,12], because
of the presence of phase factors that were not discussed in
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the original derivation of the CWT. Nevertheless, the CWT
is accurate in predicting the angular bandwidth of a volume
holographic grating. We show that the ESVM and the
CWT theories taken together produce a self-consistent
mathematical model of wave propagation inside the grat-
ings that is confirmed with experimental results.

Fig. 1 shows the model of a volume holographic grating
which is used for our analysis. For simplicity, we restrict
our attention to lossless transmission gratings; however
the results presented here should also remain valid in the
presence of loss. The z-axis is chosen in the direction of the
wave propagation, the x-axis is in the plane of incidence
and parallel to the medium boundaries, and the y-axis is per-
pendicular to the plane of incidence. In the general case the
fringe planes are slanted with respect to the medium bound-
aries and the grating vector K is oriented perpendicular to
the fringe planes. The magnitude of the grating vector is
K = 2p/K, where K is the period of the grating, and the angle
of the grating vector is /, measured with respect to the z-
axis. The fringes of the grating are represented by a spatial
modulation of the refractive index n = n0 + n1cos(K Æ r),
where n1 is the amplitude of the spatial modulation, n0 is
the average refractive index, and r is the position vector.
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Fig. 1. Model of thick holographic gratings readout.
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The read beam is denoted R and the diffracted signal beam S.
The propagation vectors q and r contain the information
about the propagation constants and the directions of prop-
agation of R and S, respectively For Bragg-matched inci-
dence, jqj = jrj = b, where b = 2pn0/k is the average
propagation constant and k is the wavelength in free space.

Vector diagrams illustrating Bragg diffraction are shown
in Fig. 2 on the Ewald sphere, which is drawn on a plane as
a circle of radius b. Bragg-matched readout is shown in
Fig. 2 with dotted arrows. For Bragg-matched incidence,
the propagation vector r is related to q and the grating vec-
tor by

r ¼ q� K ð1Þ
corresponding to the most efficient phase-matching. For
off-Bragg incidence, the vector relation takes the form

rE ¼ q� K þ Dr ð2Þ
where Dr is a mismatch vector, which is introduced as a
mathematical quantity in order to determine the direction
of the diffracted beam.
Fig. 2. Ewald sphere vector model diagram for Bragg-mismatched
incidence.
In Bragg-mismatched readout, the diffracted beam is
generated by the interaction of the electromagnetic field
with the grating over an effectively semi-infinite volume.
The uncertainty constraint for the diffracted beam can be
written as Dr Æ Dr 6 2p, where Dr represents the uncer-
tainty in the diffracted beam wave vector rE and
Dr ¼ Dxx̂þ Dyŷþ Dzẑ represents the dimensions of the
region of interaction. The grating is assumed to be infinite
in the x and y-directions, but has a finite thickness d in the
z-direction. Furthermore, the spatial extent of the optical
beam in the x and y-directions is assumed to be infinite
under the plane-wave model. Even for the experimental sit-
uation, the extent of the beam in the x and y-direction is
much larger than d. As such, we can assume that
Dx =1, Dy =1, and Dz = d. Therefore, the bandwidth
uncertainty product implies that Drx = 0, Dry = 0, and
Drzd = O(p), so that Dr ¼ jDrjẑ. The resulting vector dia-
gram is shown in Fig. 2 with solid lines. That is, to obtain
the direction of the diffracted wave in Bragg-mismatched
readout, one should draw a vector in the z-direction from
the tip of the q + K vector to the surface of the Ewald

sphere.
Next, we derive the angular direction of the diffracted

beam wave vector for Bragg-mismatched readout using the
mathematical formalism of the CWT. The reference and sig-
nal waves R = R(z)exp(�iq Æ r) and S = S(z)exp(�ir Æ r) are
described by complex amplitudes R(z) and S(z), which vary
along the z-direction as a result of energy interchange. If the
actual wave numbers differ from the assumed values, speci-
fied initially with q and r, then mathematics will force these
differences to appear in the phases of R(z) and S(z) in the
final solution of the wave equation. The vector relation is
shown in Fig. 3 on the Ewald sphere. CWT assumes that in
case of Bragg-mismatched readout, the wave number is
Fig. 3. Vector diagram illustrating the assumptions of the coupled-wave
theory for Bragg-matched and Bragg-mismatched incidence.



Fig. 4. Vector diagram illustrating corrections to the initial assumptions
of the wave-vectors directions in coupled-wave theory. Vectors rE and Dr

introduced in Fig. 2 are shown here for reference.
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not conserved, i.e., jrj5 b, and r is determined by the same
functional form r = q � K given by Eq. (1). The general
case, where the Bragg condition is not met and the length
of r differs from b, is shown in Fig. 3 with solid lines.
Bragg-matched diffraction is shown for reference with dot-
ted arrows.

The total electric field in the grating is the superposition
of the two waves:E = R(z)exp(�iq Æ r) + S(z)exp(�ir Æ r).
The other diffraction orders violate the Bragg condition
strongly and are neglected. In addition, one assumes that
the energy interchange between S and R is slow. This
allows neglecting R00 and S00 (slowly varying envelope
approximation), where the primes indicate differentiation
with respect to z. Solving the scalar wave equation, one
obtains the coupled-wave equations cRR 0 = �ijS and
cSS 0 + i#S = �ijR, where the coupling constant is defined
as j = pn1/k, with the obliquity parameters cR = qz/b and
cS = rz/b, and the dephasing measure # = (b2 � r2)/2b.
For transmission gratings, the boundary conditions are
R(0) = 1, S(0) = 0. The solutions to the coupled-wave
equations are
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where CWT introduces the parameters m = j/(cRcS)1/2 and
n = #/2cs. Eqs. (1) and (3) form the basis of the original
CWT analysis of Bragg-mismatched readout of volume
gratings.

Next we introduce corrections to the description of the
diffracted wave that readily follow from the CWT, but were
not mentioned in the original derivation. We point out that
both R(z) and S(z) contain a z-dependent phase factor
exp(�inz). This phase factor identifies the vector

n ¼ ẑ#=2cS ¼ ẑðb2 � r2Þ=4rz ð4Þ

to be a correction to the initial guess of the r vector. There-
fore, the corrected expressions for the diffracted and trans-
mitted beam wave-vectors, as predicted by the coupled-
wave theory, are

rn ¼ q� K þ n: ð5aÞ
qn ¼ qþ n ð5bÞ

Note that n is pointing along the z-direction, which is con-
sistent with our understanding of the phase mismatch
requirements as discussed in the context of the ESVM the-
ory. One can see from Fig. 4 that in the Bragg-mismatched
case, jrj5 b. Note that if jrj > b, then n is pointing in the
�ẑ direction, and if jrj < b then n is pointing in the þẑ
direction. That is, n is acting to bring the tip of the r-vector
back to the b-circle.

Let us compare the magnitude of the n vector with that
of Dr. Consider the case of off-Bragg incidence shown in
Fig. 3. From the triangle formed by vectors r, n, and the
radial vector of the b-circle, the law of cosines gives
b2 = r2 + (Dr)2 � 2r(Dr) cos(u). Since cosu = rz/r, we
obtain a quadratic equation (Dr)2 � 2(Dr)rz + (r2 �
b2) = 0 with the solution Dr1;2 ¼ rz � ½r2

z � ðr2 � b2Þ�1=2.
The solution with the + sign can be dropped, because it
corresponds to the distance to the opposite side of the cir-
cle. Writing the solution in the form Dr ¼ rz�
½r2

z � ðr2 � b2Þ�1=2 we note that for volume gratings
ðr2 � b2Þ=r2

z � 1. Therefore, we have Dr � ðr2 � b2Þ=2rz,
so that

n � Dr=2: ð6Þ
Hence the tip of the vector rn is not on the b-circle. Note
that since the expression for R(z) also contains the phase
factor e�inz, the coupled-wave theory predicts that the
propagation vector of the reference wave after the gratings
is qn = q + n. That is jrnj5 b and jqnj5 b.

In an alternative formulation of the CWT, such as pre-
sented in reference [12], one can start with the assumption
that the diffracted beam wave vector for off-Bragg inci-
dence is given by jrj = b and r = rE = q � K + Dr. Here
Dr is assumed to be pointing in the z-direction, just as
the Dr vector in Eq. (2). However, we will show that the
solution of the coupled-wave equations will produce addi-
tional phase corrections to the initially assumed r and q,
resulting in the same form of the diffracted and transmitted
beam wave-vectors as in Eqs. (5a) and (5b). Following the
same steps as in the analysis described above, one will
obtain the coupled-wave equations cRR 0 = �ijSexp
(�iDrz) and cSS 0 = �ijRexp(iDrz), where cR = qz/b and
cS = rz/b as defined before. Solving these equation with
the initial conditions R(0) = 1 and S(0) = 0, one obtains



Fig. 5. Description of wave propagation inside the holographic gratings
surrounded by a matching average refractive index medium. Solid lines
inside the hologram show what the propagation of beams would be in a
uniform glass slab. Dashed lines represent the actual directions of
propagation of diffracted and transmitted beams inside the grating.
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Note that the factor of Dr/2 appears in Eq. (6) as a result
of the exact solution of the coupled-wave equations, unre-
lated to the approximations preceding Eq. (6). Using the
condition n � Dr/2 from Eq. (6) leads to essentially the
same expressions as in 3a and 3b
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with the only difference that in Eq. (3) the phases of R(z)
and S(z) are of the opposite sign. Just as in the discussion
above, the phases of S(z) and R(z) introduce corrections to
the initially defined wave-vectors. The corrected wave-vec-
tors are

r0n ¼ q� K þ Dr� Dr=2 ¼ q� K þ Dr=2

� q� K þ n ð8aÞ
q0n ¼ qþ Dr=2 � qþ n; ð8bÞ

which are the same as the wave-vectors rn and qn derived
above.

Thus far we have presented three functional forms of the
diffracted and transmitted beam wave-vectors in off-Bragg
incidence. The first functional form is from the Kogelnik’s
CWT: jqj = b and r = q � K (Eq. (1)), which assumes effi-
cient phase-matching but allows for jrj5 b. The second
relation is our correction to the CWT: qn = q + n and
rn = q � K + n (Eq. (5)) where n ¼ ẑDr=2. We have also
shown that jrnj5 b and jqnj5 b. The third functional
form derived from ESVM (and also used for alternative
formulation of the CWT) is jqj = b and rE = q � K + Dr

(Eq. (2)) where Dr ¼ jDrjẑ. This relation does not assume
efficient phase-matching a priori, but requires that jrEj = b.
Note that regardless of the assumption on the initial value
of the diffracted beam wave vector r, the solution to the
CWT forces the diffracted and transmitted beam wave vec-
tors to become rn and qn. This suggests that rn and qn are
the correct wave-vectors inside the gratings. In addition, we
point out that the CWT solution to the diffraction effi-
ciency, defined as g = jcSj/cRjSj2, does not depend on the
initial assumption of the value of r. The diffraction effi-
ciency obtained from either Eq. (3) or Eq. (7) is given by
g ¼ sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

q
d

� ��
ð1þ n2=m2Þ ð9Þ

where n = Dr/2 (as shown in Eq. (6)).
In order to see the implication of the foregoing analysis, it

is instructive to consider explicitly the situation where the
holographic grating with refractive index n0 + n1cos(K Æ r)
is bounded by a uniform medium with a matched average
refractive index n0 on both the input and output sides,
assumed in all of the foregoing analysis, and as shown in
Fig. 5. According to the conventional interpretation of the
Snell’s law, which results from the requirement of continuity
of the tangential components of the wave vectors at the
boundary of two dielectric media, refraction is determined
by the average refractive indices of the media. Since the aver-
age refractive index in the gratings is n0, Snell’s law does not
predict refraction of the beams at the matched index uni-
form slab/holographic grating boundary. However, we
show that refraction does take place due to the spatial dis-
continuity of the index modulation term n1cos(K Æ r). We
refer to this process as the holographic refraction.

To understand this process, let us consider first the
transmitted wave R. At the front end, the transmitted wave
vector kR is in the direction of the unit vector q̂, with an
amplitude of b. According to the analyses presented above,
kR inside the grating is in the direction of the unit vector q̂n

with an amplitude that differs from b. However, as this
beam exits the back end, the amplitude of kR must again
be equal to b. This fact, together with the boundary condi-
tion that the x and y components of kR remain unchanged
throughout the whole process (see the discussion following
Eq. (2)), implies that the transmitted wave will exit the back
surface in a direction parallel to the incident kR vector, as
shown by the dashed line in Fig. 5. Thus, the whole process
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is equivalent to an effective refraction at both interfaces.
The transverse shift of the outgoing beam expected from
this model is too small to measure easily for the sample
thickness of the order of 50 lm and a Gaussian beam with
a waist size of about 1 mm. Note also that this model is
consistent with the requirement that the direction of kR

would follow the same path if incident from the right side,
and exiting on the left side, due to the time-reversal symme-
try of Maxwell’s equations.

Consider next the diffracted wave S. Again, according to
the analyses presented above, the diffracted wave vector kS

is in the direction of the unit vector r̂n, with an amplitude
that differs from b. However, as this beam exits the back
end, the amplitude of kS must be equal to b. This fact,
together with the boundary condition that the x and y com-
ponents of kS remain unchanged throughout this process,
implies that kS vector will exit in the direction parallel to
the unit vector r̂E (see Fig. 4), and shown by the dashed line
in Fig. 5. As such, there is effectively a refraction of the dif-
fracted beam as well at the exit surface. Of course, in our
experiment, the medium outside the grating is air, with
an index of �1. This leads to additional (conventional)
refraction, which is taken into account in analyzing our
experimental results.

Note that the model of the diffracted beam propagating
in the gratings in the direction rn is consistent with the
dependency of the diffraction efficiency g on n = Dr/2.
Since g / jSj2, degradation in diffraction efficiency is the
result of the diffracted wave vector dephasing inside the
gratings. The diffracted wave vector rn is dephased by
Dr=2ẑ from the efficient phase-matched wave vector r

(see Fig. 4). The wave- vectors qn and rn cannot be mea-
sured inside the gratings, and outside the gratings the trans-
mitted and diffracted wave-vectors change to q and rE.
However, the diffraction efficiency is determined only by
the diffraction inside the gratings.

One consequence of this model is that the wavelengths
of the transmitted and diffracted beams inside the gratings
are different, and neither is equal to k/n0 = 2p/b. For the
particular case presented in Fig. 4, kq > k/n0 and kr < k/
n0. Note that the actual refractive index inside the holo-
gram is n = n0 + n1cos(K Æ r). Thus the transmitted wave
‘‘sees’’ an average refractive index smaller than n0, while
the diffracted wave encounters an average refractive index
larger than n0, due to a broken symmetry away from the
Bragg-matched condition.

In order to test our theories, we performed an experi-
ment designed to measure the angular deviation from the
Bragg-angle of the diffracted beam Du as a function of
the angular deviation of the probe beam Dh. Our experi-
ment was performed with a 50 lm thick Aprilis CROP
photopolymer. We recorded the holographic gratings using
an ND:YAG frequency doubled solid-state pumped Verdi
laser operating at 532 nm. The writing beams R and S were
incident on the hologram at 0� and 50� to normal in the air
(see Fig. 1). We determined experimentally the angular
bandwidth of the holographic medium to be equal to 2.5�
measured from null to null. To confirm that diffraction in
our samples was in the Bragg regime, we calculated the val-
ues of Q = 2pkd/n0K

2 (Klein–Cook) and q = k2/K2n0n1

(Raman–Nath) parameters[13,14]. Here d = 50 lm is the
sample thickness, n0 = 1.5 is the average refractive index
of the holographic medium, n1 is the amplitude of the
refractive index modulation, and K is the grating periodic-
ity. We determined that n1 � 10�4 by measuring the diffrac-
tion efficiency at the Bragg-angle. We obtained Q � 600
and q � 104, which satisfy the conditions for the Bragg
regime that both Q� 1 (thick grating) and q� 1 (weak
modulation).

Fig. 5 shows the angular deviation from the Bragg-
matched direction of 50� of the diffracted beam S for the
read beam R scanning around Bragg-matched 0� incidence.
The angles were corrected for the Fresnel refraction at the
boundary of the holographic material in air. In the exper-
iment, the reference beam R was fixed, and the grating was
rotated so that the angle of incidence varied between
±1.25�, and the angular deviation of the diffracted beam
S was measured. For comparison, Fig. 5 displays the
graphs obtained from the ESVM (Eq. (2)) (solid line),
CWT (Eq. (1)) (dashed line), corrected CWT (Eq. (5))
(dotted line), and the experimental data (circles). The vec-
tor model graph matches the experimental data very clo-
sely, while the CWT and corrected CWT show a
mismatch of up to 0.5 and 0.25�, respectively. To quantify
data fitting, we calculated the slopes the (linear) theoretical
plots, and of the linear fits to the experimental data
obtained with coefficient of determination R2 = 1, where
R2 is an indicator from 0 to 1 that reveals how closely
the estimated linear trend corresponds to the actual data.
The CWT, corrected CWT, ESVM, and the experimental
data fits have slopes of m = 1.11, m = 1.28, m = 1.45,
and m = 1.41, respectively, indicating that the ESVM
curve provides the best fit to the experimental data. This
is in agreement with our theoretical prediction. Note that
measurement of the diffracted or transmitted beam direc-
tions inside the holographic gratings is potentially very dif-
ficult. Wave propagation inside the gratings is currently
under investigation numerically with a finite-difference
time-domain (FDTD) [15] method.

In addition, we investigated the accuracy of CWT in
predicting holographic diffraction angular bandwidth.
For lossless transmission gratings, the diffraction efficiency
(Eq. (9)) depends on n = Dr/2. However, the CWT would
have predicted the correct direction of the diffracted beam
only if n = Dr, as can be seen by comparing Eqs. (2) and
(5). To test this experimentally, we plotted normalized dif-
fraction efficiency as a function of the incident beam angle
in air for the theory curves (Eq. (9)) with n = Dr/2 (solid
line) and the experimental data (circles) in Fig. 6. For com-
parison, we also plotted normalized diffraction efficiency
theory curve calculated with n = Dr (dashed line).The nulls
of the diffraction efficiency of the CWT (n = Dr/2) match
very well with the experimental data, as expected The angu-
lar bandwidth of the diffraction efficiency calculated under



Fig. 6. Experimental and theoretical curves of diffracted beam angular
deviation vs. read beam deviation from Bragg incidence for the read beam
scanning around Bragg-matched angle of 0�. The curves are ESVM (Eq.
(2)) (solid line), CWT (Eq. (1)) (dashed line), corrected CWT (Eq. (5))
(dotted line), and the experimental data (circles).

Fig. 7. Normalized diffraction efficiency as a function of the incident beam
angle in air for the theory curves (Eq. (9)) with n = Dr/2 (solid line) and
n = Dr (dashed line), and the experimental data (circles).
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the assumption that n = Dr is about one half of the exper-
imentally observed angular bandwidth (see Fig. 7).

In summary, we investigated theoretically and experi-
mentally the directionality of the wave vector of the
diffracted beam in off-Bragg readout of volume holo-
graphic gratings. We measured the angular deflection of
the diffracted beam as a function of the deviation of
the probe beam. We explained our experimental results
on the basis of a Ewald sphere vector diagram. In addi-
tion, we obtained the theoretical expressions for the angu-
lar dependence of the diffracted beam wave vector and
diffraction efficiency using the formalism of the coupled
wave theory. We showed that the two theories taken
together produce the correct description of the wave
propagation inside the gratings. This analysis is impor-
tant for construction of a working shift-invariant corre-
lator, because one needs to be able to predict the
direction of the correlation beam. Also, the results of this
study are needed for developing a generic model for
image transmission through a volume grating. This work
was supported in part by AFOSR grant # FA49620-03-1-
0408.
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