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Abstract

Current proposals focusing on neutral atoms for quantum computing are mostly based on using single atoms as quantum bits
(qubits), while using cavity induced coupling or dipole–dipole interaction for two-qubit operations. An alternative approach is to
use atomic ensembles as quantum bits. However, when an atomic ensemble is excited, by a laser beam matched to a two-level transition
(or a Raman transition) for example, it leads to a cascade of many states as more and more photons are absorbed [R.H. Dicke, Phys.
Rev. 93 (1954) 99]. In order to make use of an ensemble as a qubit, it is necessary to disrupt this cascade, and restrict the excitation to
the absorption (and emission) of a single photon only. Here, we show how this can be achieved by using a new type of blockade mech-
anism, based on the light-shift imbalance (LSI) in a Raman transition. We describe first a simple example illustrating the concept of
light-shift imbalance induced blockade (LSIIB) using a multi-level structure in a single atom, and show verifications of the analytic
prediction using numerical simulations. We then extend this model to show how a blockade can be realized by using LSI in the exci-
tation of an ensemble. Specifically, we show how the LSIIB process enables one to treat the ensemble as a two-level atom that under-
goes fully deterministic Rabi oscillations between two collective quantum states, while suppressing excitations of higher order collective
states.
� 2007 Elsevier B.V. All rights reserved.
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Many different technologies are currently being pursued
for realizing a quantum computer (QC). One of the most
promising approaches involve the use of neutral atoms.
This approach is particularly attractive because, in princi-
ple, it is possible to achieve very long decoherence times
and very high fidelities when using neutral atoms. Current
proposals for quantum computing focusing on neutral
atoms are based on using single atoms as quantum bits,
often while using cavity induced coupling or dipole–dipole
interaction for two-qubit operations. However, given the
degree of difficulties encountered in isolating and control-
ling single atoms, this process has proven very difficult to
realize, especially on a large scale. An alternative approach
0030-4018/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.optcom.2007.05.057

* Corresponding author. Tel.: +1 847 491 7308; fax: +1 847 491 4455.
E-mail address: gspati@ece.northwestern.edu (G.S. Pati).
is to use atomic ensembles as quantum bits. However,
when an atomic ensemble is excited, by a laser beam
matched to a two-level transition (or a Raman transition)
for example, it leads to a cascade of many states as more
and more photons are absorbed [1–3]. In order to make
use of an ensemble as a qubit, it is necessary to disrupt this
cascade, and restrict the excitation to the absorption (and
emission) of a single photon only. In principle, this can
be achieved through the use of the so-called dipole block-
ade, which can be particularly efficient if Rydberg transi-
tions are used [4,5].

Dipole blockades generally occur between individual
atoms within an ensemble. In order to make use of this
blockade mechanism in a manner that is consistent with
a quantum computing architecture, it is necessary to con-
trol the distribution of inter-atomic distances between each

mailto:gspati@ece.northwestern.edu


δ1
δ2

|1>

|4>|2>

|5>|3>

Ω1 Ω1

Ω2Ω2

δ1
δ2

|1>

|4>|2>

|5>|3>

Ω1 Ω1

Ω2Ω2

Fig. 1. Schematic illustration of a five level system, illustrating the process
of LSIIB.
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pair of atoms in the ensemble in a precise manner. Further-
more, in order to achieve long decoherence times, it is
necessary to make use of dipole blockades based on spin–
spin coupling, which is necessarily much weaker than the
optical dipole–dipole coupling.

Here, we show that a new type of blockade mechanism,
based on the light-shift imbalance in a Raman transition,
can overcome these limitations. The resulting system does
not impose any constraint on the distribution of inter-atomic
distance within an ensemble. Furthermore, no dipole–dipole
coupling is necessary, so that a relatively low density system
can be used.

In what follows, we describe first a simple example illus-
trating the concept of light-shift imbalance induced block-
ade (LSIIB) using a multi-level structure in a single atom,
and show verifications of the analytic prediction using
numerical simulations. We then extend this model to show
how a blockade can be realized by using LSI in the excita-
tion of an ensemble. Specifically, we show how the LSIIB
process enables one to treat the ensemble as a two-level
atom that undergoes fully deterministic Rabi oscillations
between two collective quantum states, while suppressing
excitations of higher order collective states. We then show
how this transition can be used to realize a quantum bit
(qubit) embodied by the ensemble. Using multiple energy
levels inside each atom, the LSIIB enables the transfer of
quantum information between neighboring ensembles, as
well as the realization of a C-NOT gate. In effect, this rep-
resents a generalization of the so-called Pellizari scheme for
quantum information processing [6]. Furthermore, the
LSIIB can be used to link two separate quantum computers
(QC), by transferring the quantum state of any ensemble
qubit in one QC to any ensemble qubit in another QC.
In a separate paper, we discuss details of these quantum
computation and communication protocols, offer
practical ways to implement this scheme, and propose
experiments to demonstrate the feasibility of these schemes
[7].

The significance of the LSIIB process can be summa-
rized as follows: (a) It can be used to realize a determinis-
tic quantum bit encoded in the collective excitation states
of an atomic ensemble. (b) Along with a moderate-Q cav-
ity, it can be used to realize a two-qubit gate (e.g., a C-
NOT gate) between two ensemble-based qubits. (c) It
can be used to transport, deterministically, the quantum
state of an ensemble qubit from one location to another
separated by macroscopic distances, and (d) It can be used
to establish a quantum-link between two ensembles-and-
cavity based quantum computers. The scheme proposed
here and expanded further in Ref. [7] therefore offers a
robust technique for realizing a quantum network without
using the single atom and super-cavity based approaches
[8–10].

In order to illustrate the basic mechanism that underlies
the LSIIB, it is convenient to consider first a simple exam-
ple of a set of five levels inside a single atom, as shown in
Fig. 1. Under the rotating wave approximation (RWA),
and the rotating wave transformation [11] (RWT), the
Hamiltonian (with �h = 1) describing this interaction is
given, in the bases of {j1>, j2>, j3>, j4>, j5>}, by
H ¼

D=2 X1=2 0 0 0

X1=2 �d X2=2 0 0

0 X2=2 �D=2 X1=2 0

0 0 X1=2 �ðdþ DÞ X2=2

0 0 0 X2=2 �3D=2

2
66666664

3
77777775
; ð1Þ
where we have defined d � (d1 + d2)/2 and D � (d1 � d2).
Under the conditions that d� D, d� X1, and d� X2,
one can eliminate the optically excited states j2> and
j4> adiabatically. The effective Hamiltonian in the bases
of {j1>, j3>, j5>} is then given by [12–15]
eH ¼
ðD=2þ e1Þ XR=2 0

XR=2 ½�D=2þ ðe1 þ e2Þ� XR=2

0 XR=2 ð�3D=2þ e2Þ

2
64

3
75;

ð2Þ
where XR � (X1X2)/2d is the Raman–Rabi frequency, and
ej � X2

j=4d is the light-shift due to Xj(j = 1, 2). Note that
the levels j1>, j3> and j5> are light-shifted by different
amounts. In general, this Hamiltonian describes a process
wherein populations can oscillate between the states j1>,
j3> and j5>, with the maximum amplitude in each level being
determined by the relative values of the parameter.

Consider now the case where X2� X1. Furthermore,
assume that D = e2. Under this condition, the Raman cou-
pling between j1> and j3> become resonant, while the
Raman coupling between j3> and j5> becomes detuned
by �(e1 + e2). Explicitly, this can be seen by subtracting
an energy (e1 + D/2), to give
feH ¼
0 XR=2 0

XR=2 0 XR=2

0 XR=2 �ðe1 þ e2Þ

2
64

3
75: ð3Þ
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In the limit of e2! 0, D = 0, the detuning for the j3> to
j5> Raman coupling is simply �e1. For XR� e1 (which
is the same condition as X2� X1), the coupling to
level j5> can be ignored. The net result is that the sys-
tem will oscillate between j1> and j3>. Note that this
result is due to the fact that levels j1> and j3> get
light-shifted by nearly the same amounts, thus remaining
resonant for the Raman transition, while level j5> sees
virtually no light-shift. Thus, the excitation to level j5>
is essentially blockaded by the imbalance in the light-
shifts.

In order to verify this blockade, we used numerical
techniques to integrate the equation of motion of the sys-
tem shown in Fig. 1. Since each of the optical detunings
(d1 and d2) is assumed to be much larger than the Rabi
frequencies and the spontaneous decay rates, the effect of
the decay terms is not significant and was ignored for
simplicity. The population of each of the levels with all
the atoms starting in level 1, is shown in Fig. 2. These
are calculated for the following parameter values:
D = 0, X2/X1 = 0.1, and d/X1 = 10. Analytically, the
residual populations in levels j2> and j4> are expected
to be of the order of (X1/d)2 and that of level j5> is
expected to be of the order of (XR/e1)2, which in turn
is of the order of (X2/X1)2 and are consistent with the
values seen here. These excitations can be suppressed fur-
ther by making these ratios smaller.

Consider next the excitation of an ensemble of N atoms.
To start with, we consider each atom in the ensemble to be
a three-level system, as illustrated in Fig. 3. Using Dicke’s
model of collective excitation [1], we can show that the
ensemble excitation can be represented as shown in
Fig. 4. The collective states in this diagram are defined as
follows:
Fig. 2. Numerical results showing populations of the fiv
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The relevant coupling rates between these collective states
are also illustrated in Fig. 4. Note that for large detunings,
the excitations to the intermediate states jG1> and jG1,1>
are small, so that higher order states such as jG2> and
jG2,1> can be ignored. The remaining system looks very
similar to the five level system considered earlier. (Paren-
thetically at this point, note that the coupling between
jG1> and jC1> does not scale with

p
N, unlike the coupling

between jA> and jG1>, which scales as
p

N). We can now
proceed in a manner similar to the one described earlier.
First, in the rotating wave transformation frame, the trun-
cated, six level Hamiltonian, in the bases of jA>, jG1>,
e level system, starting with all the atoms in level 1.
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Fig. 4. Schematic illustration of the relevant collective states and the
corresponding transition rates.
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Fig. 3. Schematic illustration of a three-level transition in each atom in an
ensemble.
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jC1>, jG1,1>, jC2> and jG1,2> is given by (the justification
for not including the state jC3> will be made by showing
that the excitation to jC2> can be suppressed, thus in turn
making the amplitude of jC3> insignificant)
H ¼

D=2
ffiffiffiffi
N
p

X1=2 0 0 0 0ffiffiffiffi
N
p

X1=2 �d X2=2 0 0 0

0 X2=2 �D=2 ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

ÞX1=2 0 0

0 0 ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

ÞX1=2 �ðdþ DÞ
ffiffiffi
2
p

X2=2 0

0 0 0
ffiffiffi
2
p

X2=2 �3D=2 ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

ÞX1=2

0 0 0 0 ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

ÞX1=2 �ðdþ 2DÞ

2
666666664

3
777777775
; ð5Þ
where the detunings are defined just as before:
d � (d1 + d2)/2 and D � (d1 � d2).

If the detunings are large compared to the transition
rates, we can eliminate states jG1>, jG1,1> and jG1,2> adi-
abatically. Under this condition, the effective Hamiltonian
for the three remaining states (jA>, jC1>, and jC2>) are
given by (assuming d� D)

eH ¼
eAþD=2 XRo=2 0

XRo=2 eC1�D=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðN � 1Þ=N �

p
XRo=2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðN � 1Þ=N �

p
XRo=2 eC2� 3D=2

2
64

3
75;

ð6Þ
where eA, eC1

, and eC2
are the light-shifts of the states jA>,

jC1>, and jC2>, respectively and XRo � ð
ffiffiffiffi
N
p

X1X2Þ=ð2dÞ.
To first order, these light-shifts are balanced, in the sense
that ðeC1 � eAÞ ¼ ðeC2 � eC1Þ. This means that if the explicit
two-photon detuning, D, is chosen to make the Raman
transition between jA> and jC1> resonant (i.e.,
D ¼ ðeC1

� eAÞ), then the Raman transition between jC1>
and jC2> also becomes resonant. This balance is broken
when the light-shifts are calculated to second order in
intensity (which corresponds to fourth order in X) , and
the blockade shift is then given by

DB � ðeC2 � eC1Þ � ðeC1 � eAÞ ¼ �ðX4
2 þ X4

1Þ=ð8d3Þ: ð7Þ
With the proper choice of two-photon detuning
ðD ¼ ðeC1 � eAÞÞ to make the Raman transition between
jA> and jC1> resonant, the effective Hamiltonian (after
shifting the zero of energy, and assuming N� 1) is now gi-
ven by

eH ¼
0 XRo=2 0

XRo=2 0 XRo=
ffiffiffi
2
p

0 XRo=
ffiffiffi
2
p

DB

2
64

3
75: ð8Þ

This form of the Hamiltonian shows clearly that when
XRo� DB, the coupling to the state jC2> can be ignored.
As such, the collective excitation process leads to a Rabi
oscillation in an effectively closed two-level system consist-
ing of jA> and jC1>. This is the LSIIB in the context of
ensemble excitation, and is the key result of this paper.

While it may be rather obvious at this point, we empha-
size nonetheless that we can now represent a quantum bit
by this effectively closed two-level system. In the process,
we have also shown how to perform an arbitrary single
qubit rotation, an essential pre-requisite for quantum com-
puting. The details of how such a qubit can be used for
quantum computation, quantum communication, and the
realization of a quantum network is described in Ref. [7].

To be explicit, let us consider a specific numerical exam-
ple. Choosing the natural decay rate, C, of the excited state
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Fig. 5. Summary of the LSIIB process in an ensemble.
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to be unity, assume X2 = 100, X1 = g� 1, and d = 1000.
This corresponds to a value of D ¼ d1 � d2 ¼
eC1
� eA ffi 2:5, satisfying the condition that d� D. The

value of the blockade shift is DB ffi � 1/80. To be concrete,
we satisfy the requirement that XRo=

ffiffiffi
2
p
� DB by demand-

ing that (XRo/
p

2) = DB/10. This translates to the condition
that g

p
N = 0.035. Note that these parameters satisfy the

constraint that d� X2, and d� X1

p
N. The acceptable

range for N will be dictated by the choice of g, or vice-
versa, depending on the particular experiment at hand.
As an example, for g = 10�3, we need N ffi 1200. To see
whether such a range of parameters are potentially realis-
tic, let us consider an ensemble of cold 87Rb atoms caught
in a FORT trap, excited by control beams with a cross-sec-
tional diameter of about 200 lm. Assuming that the transi-
tions employ dipole matrix element amplitudes that are
half as strong as those of the strongest transitions, the
power needed for the X2 beam is about 100 mW, and that
for the X1 beam is about 10 pW. The time for a p-transition
going from jA> to jC1> is about 50 ls. Given that the
decoherence time in a FORT can be of the order of min-
utes, as many as 106 qubit operations can be carried out
at this rate. The number of photons in the X1 is close to
2000, so that its treatment as a classical beam is valid.

The essence of the LSIIB for ensemble excitation is sum-
marized in Fig. 5. Briefly, whenever we have a three-level
optically off-resonant transition for the individual atoms,
this can be translated into a corresponding off-resonant
three-level transition involving collective states, which in
turn is reduced to an effective two-level transition. In order
for this to hold, the primary constraint is that, for the col-
lective states, the Rabi frequency on one leg must be much
bigger than the same for the other.

To summarize, we have described a new type of block-
ade that allows one to treat an ensemble excitation as a sin-
gle, deterministic quantum bit consisting of only two-levels.
Such a system can be used to realize a two-qubit gate (e.g.,
a C-NOT gate) between two ensemble-based qubits. It can
also be used to transport, deterministically, the quantum
state of an ensemble qubit from one location to another
separated by macroscopic distances, and it can be used to
establish a quantum-link between two ensembles-and-cav-
ity based quantum computers.
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