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Modulation instability for a relaxational Kerr medium
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Abstract

We investigated on the influence of a temporally dispersive Kerr effect on the modulation instability and the propagation of solitary
wave pulse. The modulation instability gain is derived and compared with numerical calculations. The role of nonlinear response time on
reshaping the solitary pulse is examined.
� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Modulation instabilities (MI) have important conse-
quences for optical wave propagation in media with a non-
linear response. The collapse and break-up of a pulse into
sub pulses and broadening of the spectrum has been
exploited for a number of applications, including white
light generation and the frequency comb for metrology
[1]. Under the right circumstances the modulation instabil-
ity (MI) is deeply connected with optical solitons, such as,
found for the nonlinear Schrodinger’s equation (NLSE) [2].
The NLSE’s, in different forms, can describe different types
of soliton propagation in nonlinear medium. The simplest
(1+1)-dimensional NLSE demonstrates that the temporal
soliton is a stable entity that the group velocity dispersion
(GVD) is balanced by self-phase modulation (SPM) in the
nonlinear Kerr medium, meaning that the index of refrac-
tion changes with the wave’s intensity [3].

The MI has been observed in many nonlinear systems
such as plasma physics and fluid dynamics [4–6]. In the lin-
earized regime, MI refers to the exponential growth of a
small perturbation in the medium, which can break a con-
tinuous wave into periodic train of soliton-like pulses [7].
Under certain circumstances MI can be also interpreted
as a degenerated four-wave mixing process in the frequency
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domain. MI was first studied with coherent light beam in
one dimensional self-focusing medium [8]. Later research
shows that MI is also found in incoherent beams [9].
Recent studies show that spatial MI can exist in both
self-focusing and self-defocusing medium if the nonlinear-
ity is non-instantaneous [10,11], which implies new applica-
tions in the nonlinear medium like CS2 [12,13]. Temporal
MI in directional couplers with relaxing media was exam-
ined by Trillo et al. [14]. This paper has results that are
directly related to those given here. The spatial–temporal
MI of counter-propagating waves was also investigated,
implying potential applications in optical limiting [15,16].

In this paper, the finite response time of the Kerr effect is
taken into consideration. The NLSE is modified by intro-
ducing a single temporal relaxing term to modify the
refractive contribution to the NLSE. The modified MI is
derived from our equations. Using the dynamical model,
the modulation instability growth is verified and solitary
wave propagation is numerically studied in detail.

2. Model

The propagation of optical soliton in instantaneous
nonlinear medium can be described by the nonlinear Schro-
dinger’s equation (NLSE). When perturbations are
ignored, the equation takes the form

i
oE
oz
¼ b2

2

o2E
ot2
� c j Ej2E ð1Þ
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where E = E (t, z) describes the electric field envelope in
both time and space. b2 is the group velocity dispersion
(GVD) parameter, and c is nonlinear coefficient for self-
phase modulation (SPM). This equation provides simple
insights into the dynamics of optical solitons. The first term
on the right of equation stands for the GVD of the pulse,
which alone broadens the optical pulse. The second term
represents the nonlinear Kerr effect, which can compress
the pulse. When the GVD and the SPM effects exactly bal-
ance each other, an optical soliton can be generated that
travels without shape distortion.

For non-instantaneous, nonlinear media, because of the
delay in the response time in such material/structures,
perturbations of the NLSE are added and the dynamical
behavior is affected. A soliton-like pulse propagating
in a one dimensional Kerr medium, which has a non-
instantaneous nonlinear property characterized by the
response time s, will undergo shape distortions on a length
scale that is determined by the strength of the perturbation.
In this paper we expand the NLSE to a set of coupled
equations.

i
oE
oz
¼ 1

2

o2E
ot2
þ NE ð2aÞ

oN
ot
¼ 1

s
ð�Nþ j Ej2Þ ð2bÞ

For the sake of simplicity, the b2 and c in Eq. (1) are
scaled in the new model. N = N (t, z) represents the nonlin-
ear index of the medium. The medium dynamics is
described by a simple relaxational model in Eq. (2b), some-
times called the Debye relaxation model [12,13]. The
parameter s is the medium’s response time. The parameter
N replaces the original NLSE nonlinearity term jEj2. The
dynamics of N is related to the local field intensity and
the response time of the Kerr medium.

3. Modulation instability

The modulation instability, which exists in many nonlin-
ear systems, refers to the phenomenon that a weak pertur-
bation from the steady-state solution can grow
exponentially with propagation distance. In the NLSE case
the modulation instability is a result of the interplay
between the GVD and the Kerr effect of the medium.

The steady-state solution to Eq. (2) for E possesses the
form of a continuous wave

E ¼ E0eijE0j2z ð3Þ
One key question is whether this continuous wave is sta-

ble against small perturbations. To testify, we add small
perturbations e to E

Ep ¼ ðE0 þ eÞeijE0j2z ð4Þ
The perturbation of N from its steady-state value is

expressed in a linear form as

Np ¼ N 0 þ n ð5Þ
where n is the perturbation from N0. Note that e can be
complex.

We begin the stability analysis by substituting Eqs. (4)
and (5) into Eq. (2) with the linearized result being

i
oe
oz
¼ 1

2

o2e
ot2
þ nE0; ð6aÞ

on
ot
¼ 1

s
�nþ ðeþ e�ÞE0ð Þ: ð6bÞ

It’s simple to solve Eq. (6) in the frequency domain.
Taking the Fourier transform and eliminating the function
~n, the fields are expressed in coupled equations as

k þ X2

2
� E2

0

1þ iXs

� �
eðX; kÞ � E2

0

1þ iXs
e�ð�X;�kÞ ¼ 0 ð7aÞ

� E2
0
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eðX; kÞ þ �k þ X2

2
� E2

0

1þ iXs

� �
e�ð�X;�kÞ ¼ 0

ð7bÞ

The nontrivial solutions for both e(X,k) and e*(�X,�k),
leads to the following dispersion relation between k and X
(Eq. (13a) in Ref. [15]).

k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X4

4
� X2E2

0

1þ X2s2
ð1� iXsÞ

s
ð8Þ

The frequency dependent dispersion and gain coeffi-
cients are extracted from this result. The gain is determined
by the imaginary part of the wave vector k. For compari-
son the well-known gain spectrum for the instantaneous
nonlinear medium, the dispersion relation between k and
X is [2]

gðXÞ ¼
j X j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

c � X2
q

2
ð9Þ

where Xc = 2jE0j.

4. Results

The gain spectrum of instantaneous Kerr medium for
jE0j = 1 is plotted in Fig. 1. The actual frequency and wave
Fig. 1. Gain spectrum for the instantaneous nonlinear Kerr medium.
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vector of the perturbation are shifted from the carrier fre-
quency and wave number values x0 + X and b0 + k,
respectively. The points in Fig. 1 are the numerical values
of the gain calculated by solving the NLSE equation with
a small sinusoidal perturbation.

As seen in Eq. (9) and illustrated in Fig. 1 for the instan-
taneous Kerr medium response, the peak gain occurs at

X ¼ � Xcffiffi
2
p with a value gmax ¼ g � Xcffiffi

2
p

� �
¼ 1. The gain only

occurs in the regime jXj < Xc, indicating that temporally
homogeneous wave modulated by noise experiences expo-
nential growth only within the cutoff frequency region.
For jX j > Xc, k is always a real number, meaning that
the steady-state solution is stable against any perturbation.
The gain curve from our simulation agrees with the analyt-
ical result.

For non-instantaneous Kerr medium, s 6¼0, the modified
NLSE are solved. From Eq. (8), k remains complex in the
entire frequency domain. The real part of k indicates that
the wave always propagates with certain periodicity
Z ¼ 2p

ReðkÞ. The imaginary part of k shows that during prop-
agation, the amplitude of the perturbation increases expo-
nentially with distance. Put into equation,

eðzÞ
eð0Þ

����
���� ¼ expðgðXÞzÞ; gðXÞ ¼ ImðkÞ ð10Þ

The propagation of a small perturbation in the non-
instantaneous nonlinear medium can be interpreted as a
combination of periodically repetitive propagation and
exponential growth of perturbation amplitude at the same
time. We choose sinusoidal perturbation at z = 0, i.e.
e(t) = ecos(Xt), in our numerical experiment, where e is a
small parameter and the frequency X is varied. Fig. 2 illus-
trates the growth of a harmonic perturbation in the non-
instantaneous nonlinear medium. Three typical relaxation-
al response parameters chosen for further analysis are:
s1 = 0.2, s2 = 1 and s3 = 10. By analyzing the variance in
Fig. 2. Gain of the periodic temporal perturbation versus propagation
distance. Perturbation parameters: e = 0.001 and X = 2.5.
the perturbation amplitude with propagation distance,
the gain can be extracted. Using different perturbation fre-
quencies the gain spectra are calculated.

The graphs of the gain versus frequency in Figs. 3–5
demonstrate that there is a broader gain bandwidth for
the non-instantaneous nonlinear medium and the peak
gain is reduced as the relaxation time increases. There is
excellent agreement between the theoretical predicted gain
curve and our numerical simulation of the periodic ampli-
tude gain. Only the positive frequency side of the gain
curve is shown here; the spectra are symmetric around
X = 0.

As noted the peak gain decreases, as the relaxing time s
increases. This can be interpreted by treating the modula-
tion instability as a four-wave mixing process, the pertur-
bation being the probe waves and the CW pump beam.
The energy of the two photons from the pump produces
two new conjugate frequency photons. For a specific fre-
quency pair ±X, the gain coefficient is roughly reduced
by the term 1 + (Xs)2 (see Eq. (8)). In the time domain
for small relaxation times, a term similar to the Raman
contribution is added and the pulse undergoes a redistribu-
tion of energy from the pump frequency to lower frequen-
cies. At higher frequencies the gain is reduced because of
weaker coupling between the waves.

Comparing the gain curves of the instantaneous nonlin-
ear medium and its counterpart, the gain peak is shifted
from �Xc=

ffiffiffi
2
p

toward the carrier frequency. The reason
for this phenomenon is that the relaxing time s depresses
the gain at low and intermediate frequencies (jXj < 2). On
the other hand the cutoff at jXj = 2 when s = 0 is relaxed
because the marginal instability has been replaced by a pair
of solutions giving gain and loss and both are excited by a
general initial condition.

5. Soliton-like pulse propagation

With the modified model, the influence of the non-
instantaneous Kerr medium on the solitary wave propaga-
tion can be studied. One popular numerical method used to
Fig. 3. The gain spectrum for s1 = 0.2.



Fig. 5. The gain spectrum for s3 = 10.

Fig. 4. The gain spectrum for s2 = 1.
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solve Eq. (2a) is called the split-step or spectral method
[17,18]. In this method the linear and nonlinear parts of
the partial–differential equation are separated and handled
in separate steps. By doing so, we rewrite Eq. (2a) in the
following form

oE
oz
¼ � i

2

o
2E

ot2
� iNE ¼ ½~Dþ ~N �E ð11Þ
Fig. 6. s = 0.2 (a) pulse shape in the medium (b) N of
where ~D ¼ � i
2

o2

ot2 and ~N ¼ �iN are the linear and the non-
linear operator, respectively.

The linear step of this method can be easily done in the
frequency domain and the nonlinear step can be treated in
the time domain. Fast Fourier transform methods are
applied to solve the dynamical equations. The second-
order solution for E at incremented distance z + Dz is
found to be

Eðt; zþ DzÞ ¼ exp
DzD

2

� �
expðDzNÞ exp

DzD
2

� �
Eðt; zÞ

ð12Þ
The precision of the numerical solution depends on both

the time-frequency domain resolutions and the step sizes
along the propagation direction.

The integral form solution of Eq. (2b) is

Nðt; zÞ ¼ 1

s

Z t

�1
e�
ðt�t0Þ

s j Eðt0; zÞj2dt0 ð13Þ

Eqs. (12) and (13) constitute the mathematical frame-
work for our computer calculations.

We examine the effect of non-instantaneous Kerr medi-
ums on the propagation of the soliton-like pulse with a
hyperbolic secant intensity profile in time, that is,

EðtÞ ¼ sechðtÞ ð14Þ
This is the fundamental soliton solution of the instanta-

neous NLSE.
Again, for our illustration of the perturbation effects,

three typical relaxational response parameters are chosen
s1 = 0.2, s2 = 1 and s3 = 10. Comparison between Figs.
6–8 leads to several observations about the affect of the
non-instantaneous nonlinear medium. The graphs of the
function N, show the delayed response that develops in
the medium yielding a persistent tail as the pulse passes a
given position. The pulse peaks are delayed to longer times
and eventually the pulse envelope is severely broadened.
Analysis of the pulse spectrum shows that its peak is shifted
to higher frequencies. The process is analogous to the red-
shifted frequency shift found in intra-pulse stimulated
Raman scattering. The pulse delay is more evident for
the shorter relaxation times and the effect of a finite relax-
the medium. We follow the propagation to z = 5.



Fig. 7. s = 1 (a) pulse shape in the medium (b) N of the medium.

Fig. 8. s = 10 (a) pulse shape in the medium (b) N of the medium.
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ation time is already apparent for s = 0.2. As s increases,
the magnitude of N decreases, and the effect of the nonlin-
earity is diminished, which also limits the frequency shift.
The balance between the nonlinearity and the dispersion
cannot be maintained over distances that are sufficiently
long.
Fig. 9. Pulse spreading in non-instantaneous Kerr medium (s = 1) with
the initial field jEij and the final field, jEfj.
This is intuitively understandable because s also deter-
mines the magnitude of the nonlinear response in our
model. As stated earlier, the optical soliton is a dynamical
entity derived from the balance between GVD and SPM.
When the Kerr effect becomes weaker, it no longer balances
the dispersion and the pulse spreads. Fig. 8 shows that for a
soliton-like pulse propagating in non-instantaneous Kerr
medium (s = 1), after certain distance (z = 5), the maxi-
mum of N drops to about 40% of that for the instantaneous
nonlinear medium. The pulse, unable to maintain its shape
broadens in an asymmetric way as shown in Fig. 9, where
the initial and final field envelope pulse profiles are shown.
This pulse spreading process, in return, leads to even
weaker Kerr effect along the propagation.

6. Conclusion

In this paper, we presented the effect of non-instanta-
neous Kerr medium on the MI and showed it’s affect on
the propagation of a soliton-like pulse. We showed that
the finite response time of Kerr effect alters the MI by low-
ering the gain and removing the gain cutoff frequency. It
was analytically shown and numerically demonstrated that
a long relaxing time of the medium diminishes the nonlin-
ear Kerr effect and shifts the frequency, resulting in a
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failure to maintain the shape of the soliton-like pulse.
Compared with the ideal Kerr medium, the new gain band-
width is no longer limited to a frequency region below the
cutoff frequency, Xc. For X < Xc, the gain decreases
because fewer photons are generated by the four-wave mix-
ing procedure due to the smaller effective nonlinearity.
There is a crossover around Xc where the tail of the gain
curve extends to high frequencies. For X > Xc, unlike the
instantaneous Kerr medium, the MI gain region is
extended to break-up temporal pulses at higher frequen-
cies. The soliton-like pulses undergo a frequency shift, sim-
ilar to that found for stimulated Raman scattering, which
delays the pulses to later times.
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