
Distortion free pulse delay system using a pair of 
tunable white light cavities 

H. N. Yum,
1,3

  M. E. Kim,
2
 Y. J. Jang,

1
 and M. S. Shahriar

1,2,
* 

1Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, 
USA 

2Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA 
3Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843, USA 

*shahriar@northwestern.edu 

Abstract: Recently, a tunable bandwidth white light cavity (WLC) was 
demonstrated by using an anomalously dispersive intra-cavity medium to 
adjust a cavity linewidth without reducing the cavity buildup factor [G.S. 
Pati et al., Phys. Rev. Lett. 99, 133601 (2007)]. In this paper, we show 
theoretically how such a WLC can be used to realize a distortion-free delay 
system for a data pulse. The system consists of two WLCs placed in series. 
Once the pulse has passed through them, the fast-light media in both WLCs 
are deactivated, so that each of these now acts as a very high reflectivity 
mirror. The data pulse bounces around between these mirrors, undergoing 
negligible attenuation per pass. The trapped pulse can be released by 
activating the fast-light medium in either WLC. Numerical simulations 
show that such a system can far exceed the delay-bandwidth constraint 
encountered in a typical data buffer employing slow light. We also show 
that the pulse remains virtually undistorted during the process. 
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In recent years, there have been major breakthroughs in achieving slow-light, which results 
from a very steep positive dispersion, in a number of materials. Initially, electromagnetically 
induced transparency (EIT) was used in atomic gases [1] and solid-state material [2] for this 
purpose. EIT has also been observed in a solid at room temperature [3], as well as in 
semiconductor bands at 10K [4]. More recently, mechanisms other than EIT have been used 
to observe slow-light in room temperature solids. These include population pulsations in ruby 
[5] and semiconductor waveguides [6], stimulated Brillouin and Raman gain in fibers [7–11], 
as well as various resonators and periodic structures such as gratings and photonic crystals 
[12]. Some progress has also been made in enhancing the delay-bandwidth product (DBP) 
[13,14], as well as in the precise tuning of delays for individual bits [15]. So far, using slow-
light techniques, a light pulse has been delayed by less than or several times the pulse duration 
[7,9,11]. Nonetheless, it has become clear of late that a slow-light based data buffering has 
severe limitations. 

A more versatile technology that will allow data buffering with a high delay-bandwidth 
product is based on the use of dynamically reconfigured cavity bandwidth and dispersion in 
photonic crystals [16,17]. With high-speed electrical or optical control, the cavity finesse is 
lowered, thus enhancing its bandwidth to be large enough to load a high bit-rate data stream. 
Once the stream is loaded, the finesse is raised rapidly, thus trapping the data stream inside 
the cavity. However, physical implementation of this approach for practical systems has 
proved difficult for many reasons. 

In this paper, we describe a variation of this approach by making use of the so-called white 
light cavity (WLC), which has a bandwidth much larger than the inverse of the cavity lifetime 
[18]. A pair of WLC’s can be used to realize a trap-door type data buffer. Using Stimulated 
Brillouin Scattering (SBS) induced anomalous dispersion in an optical fiber, for example, 
such a buffer can be realized for wavelengths used in telecommunication. Unlike buffers that 
make use of slow light, the delay-bandwidth product for this WLC buffer can be very high, 
making it suitable for delaying very high bit rate data stream for a long time. Furthermore, the 
WLC buffer allows easy access to the data while inside the buffer, making it possible to 
perform on-line data sampling, processing and re-routing, using all optical techniques. 
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Fig. 1. Schematic of a tunable-bandwidth WLC; Two partial reflectors, each with a reflectivity 
R, enclose the intracavity medium of length Lm with anomalous dispersion, forming a cavity of 
physical length L. 

Before presenting the details of this delay system, we briefly review a theoretical model to 
illustrate the relevant features of a WLC. Figure 1 displays a typical WLC where two partial 
reflectors form a Fabry-Perot cavity of length L, containing an intracavity medium of length 
Lm with anomalous dispersion. In what follows, we assume L = Lm, although this condition is 

not necessary. A monochromatic optical input wave, represented as ( ) j t
in 0E E e   , can be 

related to the output field as 

 
2

2 21

jkL
j t

out 0 jkL

t e
E E e ,

r e





 


 (1) 

where E0 is the field amplitude, L is the cavity length, t and r are the field amplitude 
transmission and the reflection coefficients of each partial reflector, respectively, (for 
intensity, R = r

2
, T = t

2
 and R + T = 1) and ω is the angular frequency of the optical field. 

Here, k is the wave number, expressed as n ck  , where n is the refractive index of the 

medium inside the cavity, and c is speed of light in vacuum. For the WLC, n is a function of 

ω, so that ( ) ( )k n c    . We consider the particular case where the anomalous dispersion is 

produced by a gain doublet centered around ω0, the empty-cavity resonance frequency. This 

corresponds to an anti-symmetric profile for n( ), so that 
0

2 2

2 (1 2)n d n d


   has a null 

value. We can thus express n( ) as a Taylor expansion around ω0: 
3

0 0 1 0 3( ) ( ) ( )n n n n      , where n0 is the index of the medium at 
0  , 

0
1n dn d


  , and 

0

3 3

3 (1 6)n dn d


  . 

Under ideal conditions for a WLC, the product of the index and the frequency remains a 

constant: 
0 0n n  . If this condition holds for a range of  around 

0  (assuming 

0 ), we have 
1 0 0/n n  , and 

3 0n . Physically, it is easy to see what happens 

when the ideal WLC condition is fulfilled. The resonance condition for the cavity is 

/ 2L m , where m is an integer and  is wavelength, given by 2 c / n     . Thus, if the 

product n  remains a constant, the wavelength is independent of frequency, so that the cavity 

is resonant for all frequencies over the range  . A pulse with a bandwidth of   will 

therefore transmit through the cavity resonantly, even though the empty cavity bandwidth may 

be much smaller than  . This is the essential concept behind the WLC. The consistency of 

the WLC effect with fast light is understood by considering the group index 0 0 1gn n n  and 

the group velocity g gv c n of the intracavity medium. Under the ideal WLC condition, 

1 0 0n n /    so that 0gn  . This condition corresponds to an infinite group velocity of light; 

thus, the WLC effect is a manifestation of fast light. 
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More generally, the transfer function of WLC is given by 2 2 2(1 )jkL jkL

WLCH t e r e     

where 
3

0 0 1 0 3 /k n n n c               . For the empty cavity, the transfer function 

can be written as 0 022 2(1 )
jk L jk L

ECH t e r e
 

    where k0 = ω/c. For completeness, we note 

that for free space propagation over a distance L, the transfer function in our notation is 

simply a phase accumulation: expfreeH j L c    ( ). 

Next, we consider the response to a pulse, 
inS t  . We choose the input pulse to be of the 

form  2 2

0 0exp expinS t t t j t         , so that its Fourier transform is given 

by
2

0 0 02 4inS t exp t       . The carrier frequency of the pulse is upshifted 

by ξ from the empty cavity resonance (ω0). By virtue of the convolution theorem, the output 

of a WLC is the inverse Fourier transform of the product of inS    and 
WLCH  . Thus, the 

output intensity is 
2

WLCS t() , where  1 2WLC in WLCS t S H exp j t d





        . 

Likewise, for a reference pulse that propagates in free space over the same distance, L, the 

resultant pulse after traveling is  1 2free in freeS t S H exp j t d





        . 

Before computing the output signal, it is instructive to discuss the anticipated behavior by 

applying the well-known concept of group velocity to the whole system. The phase () for an 
individual frequency wave after a propagation distance of L can be written as 

 ,WLCn L
t

c


    (2) 

where nWLC is the effective refractive index of the WLC. To find the group velocity (or index) 
of the WLC, we consider a pulse propagating through it. The pulse contains frequency 

components within a particular bandwidth,  . We require that after the propagation all the 

frequency components be added in phase [19] at the peak of the pulse, so that 0d d   . 

We can then define the group velocity of the WLC simply as g WLCv L / t   , where t is the 

time of propagation through the length of the cavity under this constraint. After differentiating 
Eq. (2) with respect to ω and setting the result to equal zero, we find 

 /g WLC WLCv c d n d    ( ) . It is convenient to express the group velocity as 

g WLC g WLCv c / n    , where g WLCn    is the effective group index of the WLC, which in turn is 

given by ( ) ( )g WLC WLC WLC WLCn d n / d n dn / d        [20]. 

If the complex transfer function 
WLCH  is written as 

WLC WLCH exp j H   , then the output 

of the WLC in frequency domain can be written as expWLC WLC WLC inS H j H S         . 

Here, 
WLCH  is the phase resulting from the propagation inside the WLC. Thus, the second 

term in Eq. (2) is given by 
WLC WLCn L c H    so that ( )WLC WLCn c H L    . We thus get: 

 .WLC

g WLC

d Hc
n

L d
 


   (3) 

In general, the degree of pulse stretching in time domain after the propagation through the 

WLC is given by ( )( )g WLCT L c dn d      where Δω is the pulse bandwidth [19]. A 

positive (negative) value of T  corresponds to pulse broadening (compression). From Eq. 
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(3), we obtain 2 2( )WLCT d H d      , so that the pulse maintains its original shape after 

propagation if its spectrum belongs to the spectral region where 
22 0WLCd H d  . 

(-0)/2 100MHz

(a)

22 2

WLC EC inH , H , S

107 (second)

2 2

free WLCS , S

(c)

(radian)

(-0)/2 100MHz

(b)

WLC ECH , H 

 

Fig. 2. (a) Transfer functions for empty cavity(blue) and for WLC(red), and the Fourier 

Transform of Gaussian input(green). 
2

inS  is normalized to the peak magnitude of .. . (b) 

Phases of 
ECH   (blue) and 

WLCH   (red). (c) 
2

freeS  (blue) and
2

WLCS  (red). The 

parameters of the intracavity medium are n1 = 8.223 × 1016/rad, n3 = 5.223 × 1035/rad3. 

Figure 2 displays the transfer functions (
2

WLCH ,
2

ECH ), the phases (
WLCH ,

ECH ), the 

frequency spectrum of the input pulse (
2

inS ) and the output pulses (
2

WLCS and 
2

freeS ), for a 

specific set of parameters. For the cavity, we have chosen the length L = 5cm and the Finesse 
= 999(R = 0.999), so that the cavity bandwidth is about 2.9MHz (FWHM), and assumed, for 

simplicity of discussion, that the medium fills the whole cavity (i.e., 
mL L ). We have used 

ω0 = 2π × 1.9355 × 10
14

 corresponding to 1550nm which is a wavelength of widespread use in 

telecommunication. We have chosen the value of 
1n  to satisfy the ideal WLC condition (i.e., 

1 0 0n n /  ). In a real system, such as the one employing dual gain peaks, it is easy to 

satisfy this condition. However, the value of n3 is non-vanishing for such a system, thus 
limiting the bandwidth of the WLC. Here, we have chosen a value of n3 corresponding to a 
WLC bandwidth of about 120 MHz (FWHM). The width of the Gaussian input pulse is 
chosen to be Δνpulse = 29MHz (corresponding to t0 = 34ns) and the carrier frequency is shifted 
from ω0 by ξ = 1.5 × Δνpulse. Thus, the frequency spectrum of the pulse is sufficiently 
separated from the spectral region of an empty cavity resonance. Explicitly, the pulse 

spectrum is expressed as 2

0 0 02 4inS t exp t       . We will discuss later on 

the necessity for this shift in designing the trap-door data buffering system. 

Figure 2(a) indicates that for a WLC associated with n3 = 5.223 × 10
35

, the pulse 

spectrum ( )inS  belongs to the spectral region where the amplitude of the cavity response 

function (
WLCH ) begins to drop slightly from the uniform peak value. Thus, the intensity of 

the output pulse (red) is slightly smaller than its input value, as shown in Fig. 2(c). By 

comparing 
2

inS  to 
WLCH  in Fig. 2(b), we find that most of the spectral components of the 

probe is in the region where the slope is linearly approximated to 82 10WLCd H d     . 

Thus, according to Eq. (3), 120g WLCn   . As a consequence, the pulse slows down 

approximately 82 10 second compared to the reference which propagates in free space, as 

illustrated in Fig. 2(c). To understand the small pulse compression in time domain, we 

consider 
22

WLCd H d  and 
2

inS . By inspecting Fig. 2 (a) and (b), we find that 
2

inS  contains 
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the inflection point of 
WLCH  (

22 0WLCd H d   ) which is close to the center of the pulse 

spectrum. The spectral components of the pulse are almost uniformly distributed within the 

spectral region of positive and negative values of 
22

WLCd H d  , with a small shift towards he 

region where 
22 0WLCd H d   . Therefore, the output pulse is somewhat compressed in time, 

as can be seen in Fig. 2(c). 

(-0)/2 100MHz

(a)

22 2

WLC EC inH , H , S

(-0)/2 100MHz

(b)

WLC ECH , H  (radian)

107 (second)

2 2

free WLCS , S

(c)
 

Fig. 3. For the medium with n1 = 8.223 × 1016/rad, n3 = 1.723 × 1036/rad3 (a) Transfer 
functions for empty cavity(blue) and for WLC(red), and the Fourier Transform of Gaussian 

input(green). 
2

inS  is normalized to the peak magnitude of 
2

inS . (b) Phases of transfer 

function for empty cavity(blue) and for WLC(red). (c) |Sfree|
2(blue circles) and |SWLC|2 (red). 

Figure 3 illustrates the behavior of the WLC when the value of 
3n is reduced by a factor of 

3, so that the bandwidth of the WLC is increased to nearly 350 MHz (see Fig. 3(a)). As 
indicated in Fig. 3(b), the input pulse spectrum now lies mostly within the region where 

0WLCd H d  and 
22 0WLCd H d   . More specifically, 0WLCd H d  so that 

g WLCv c   , as dictated by Eq. (3). As a result, the pulse propagates through the WLC with 

virtually no reduction in amplitude and no distortion. Furthermore, it leads, by a very small 
duration, the pulse propagating in free-space. Given the relatively short length of the cavity, 
the degree of advancement is virtually unnoticeable here, as indicated by nearly overlapping 
pulses shown in Fig. 3(c). A more detailed analysis using numerical simulations, presented in 
Ref [21], confirms this analytical result, and illustrates the behavior of the pulse as it passes 
through the WLC. Of course, as has been noted previously, such advancement does not 
violate causality [22]. Finally, note that in the absence of the dispersive medium, the pulse 
gets fully reflected by the cavity, since its spectrum is shifted from the empty cavity 
transmission window as shown in Fig. 3(a). 

From the results presented above, it is clear that a single WLC cannot be used to realize a 
data buffer. Instead, one must employ a pair of WLC’s in series, in a trap-door configuration. 
Figure 4 shows schematically the trap-door data buffering system, consisting of two identical 
WLCs. The one on the left is called the LWLC, and the one on the right is called the RWLC. 
Here, each WLC is designed to be of the type described in Fig. 3 above. Each WLC has a 
length L, and has two partial reflectors (PRs) enclosing the dispersive medium inside. Each 
PR is assumed to be highly reflective, corresponding to a high finesse. The two WLCs are 
separated by a distance L2. We assume that the negative dispersion inside each WLC is 
created by a pump signal with two frequency components (for example, in our original 
demonstration of a WLC [18], a Raman pump with two frequency components produced the 
double-peaked gain, yielding negative dispersion, with the gain negligibly small at the center). 
When the pump is turned off, the dispersion vanishes, and the WLC is converted to an 
ordinary cavity. The frequency separation of the two components inside the pump and the 
intensities thereof are parameters which determine the slope of the dispersion. One can control 
theses parameters to change n1 and n3 and thus manipulate the linewidth of each WLC. 
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L2

LWLC

L

RWLC

L

 

Fig. 4. Diagram of the proposed pulse delay system. Two identical WLCs are separated by a 
distance of  L2. 

The data buffering process works as follows. Consider a Gaussian data pulse with a 

bandwidth ( pulse ) that is broader than the linewidth of the empty cavity for each WLC. We 

also assume the carrier frequency of the data pulse to be shifted by 1 5 pulse.  from the 

resonance frequency (ω0) of each empty cavity. Ordinarily, the WLC process is kept turned 
off in each WLC. Once the buffer is ready to load the pulse, entering from the left, the WLC 

effect is activated in LWLC only. As illustrated in cavity freeS t &S t     of Fig. 3(c), the pulse 

appears at the exit of the LWLC without any delay, attenuation or distortion compared to a 
reference pulse which propagates in free space. Once the pulse has left the LWLC, the WLC 
effect inside LWLC is turned off. We assume that the intermediate zone between LWLC and 
RWLC is long enough to spatially confine the data pulse. The pulse now propagates in the 
middle of the two WLCs and reaches the left PR of RWLC. Note that since the WLC effect in 
the RWLC is kept turned off, it behaves as an empty cavity. Since the pulse is sufficiently 
shifted from the resonance frequency ω0 of the empty cavity, the frequency spectrum of the 

pulse has a negligible overlap with the narrow transmission spectrum (
FWHM MHz   ) of 

the empty cavity, as illustrated in Fig. 3(a). As such, the RWLC now acts as a simple reflector 
with the very high reflectivity (R) of the PR. The pulse is therefore reflected with only a small 
attenuation due to the finite transmission of the PR. When the pulse reaches the LWLC after 
reflection, the LWLC also acts like a near perfect reflector with a high reflectivity of R, since 
the WLC effect inside it has been turned off. 

L2

0

j tE e 

2

0

j L cj tE e re
 

2 223

0

j ( L L ) cj tE e r e
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2 245

0

j ( L L ) cj tE e r e
  

22 12 1

0

j ( N )L cj t ( N )E e r e
   

22 12

0

j ( N )L cj t NE e r e
  

RHS PR of LWLC LHS PR of RWLC
 

Fig. 5. Illustration of  N round trips between two reflectors. See text for details. 

The pulse will thus remain trapped between the two WLCs, bouncing between them. Once 
we are ready to release the pulse, we activate the WLC effect in the RWLC, for example. 
Upon reaching the RWLC, the pulse will now pass through it, again with virtually no 
attenuation or distortion. The net delay achieved is simply given by the number of bounces 
times the round trip time between the two WLCs. The limit on the maximum number of 
bounces is determined by the residual attenuation due to the very small but finite transmission 
of the PRs. 
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The discussion presented above can be summarized by finding a transfer function for the 
entire system which is composed of the LWLC, the RWLC and the region in the middle. First, 
consider the transfer function of the intermediate zone. As illustrated in Fig. 5, consider a 
monochromatic wave starting from the right PR of LWLC (PR1) and arrives at the left PR of 

RWLC (PR2) after N round trips. If 
0

j tE e  represents the wave at PR1, the wave at PR2 after 

N round-trips can be is written as 22 1

0

j ( N )L cj t NE e R e
    where L2 is the distance between the 

two PRs. Therefore, the transfer function of the intermediate zone can be written as: 

   22 1j ( N )L cN

iH R e .
  

   (4) 

The total transfer function ( )totalH  of the pulse delay system can be expressed as 

( ) ( ) ( ) ( )total L i RH H H H      where ( )RH   and ( )LH   are the transfer functions of the 

RWLC and the LWLC, respectively. Since the WLCs are identical, we have 

( ) ( ) ( )R L WLCH H H     . Again, by virtue of the convolution theorem, the output of the 

delay system can be written as 

  
1

2
system total inS t H S exp j t d .





      

  (5) 

In order to determine the net delay, it is also necessary to compute the transfer function of 
the reference pulse, which propagates in free space over the distance of (2L + L2). As before, 
this propagation can be represented by the simple transfer function of 

 22freeH ( ) exp j L L c      , so that  1 2free free inS t H S exp j t d





        . 

2

freeS
2

systemS for N=1

10-4 (second)

2

systemS for N=50

10-6 (second) 10-6 (second)
 

Fig. 6. At t = 0, the reference and the data pulses are launched at the entrance of the LWLC. 

Blue is the reference pulse (
freeS t  ). It propagates the optical path of 2L + L2 in free space and 

the center of the pulse appears at the exit of RWLC after 6

22 1 67 10     t L L c . second . 

The data pulse is observed at the output of the RWLC after 
6

22 3 5 00 10     t L L c . second for one round trip (N = 1) and 

4

22 101 1 6833 10      t L L c . second  for N = 50. 

Figure 6 graphically illustrates freeS t  and systemS t  . Recall that we have chosen the input 

pulse to be the same as the Gaussian pulse in Fig. 3(a) and are using the WLC parameters in 
Fig. 3(b) for both the RWLC and the LWLC. Specifically, we have used a data pulse of 

29MHzpulse  . The carrier frequency of the pulse is shifted from the empty cavity 

resonance by 1 5 33 5MHzpulse. .  . For illustration, we consider L2 = 500m. The numerical 

simulation suggests that for one round trip (N = 1), the data pulse is delayed by 
6

22 3 3 10 L c . sec . For fifty round trips (N = 50), the delay time is observed to be 

4

2100 1 67 10 L c . sec  . Note that the delay is equal to approximately 4843 times the input 

pulse duration ( 5

01 7 10 4843. t ). The intensity attenuation is less than 10% due to the 

finite transmission of the PRs. Of course, the attenuation can be further reduced by using PRs 
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with even higher reflectivities. The large value of L2 can be realized by an optical fiber loop, 
for example. This loop can be coupled to the WLCs with negligible loss if the WLCs are 
realized using fast light effect in optical fiber as well [23]. Of course, there would be an 
additional attenuation of 0.2dB/km for 1550nm. Taking into account the typical refractive 
index of about 1.46, this would correspond to an additional attenuation of ~6.8dB. This is 
actually less than the attenuation suffered by optical data in long haul transmission, where the 
typical distance between regenerators could be as high as 100 km. Since the attenuation is not 
expected to be accompanied by any significant distortion, it should be easy to restore the pulse 
amplitude by using an optical amplifier, for example. In Ref. 23, we show an explicit scheme 
for employing an amplifier for restoring the pulse amplitude in conjunction with the WLC 
data buffer, and point out the significant advantages of this approach over the conventional 
recirculating buffer [24]. 

The bandwidth of the delay system can be defined as the maximum frequency spectrum 
width of a data pulse that the system can delay without noticeable distortion. In this case, the 
effective bandwidth is given by half of the difference between the WLC bandwidth and the 
empty cavity bandwidth. For the parameters used in Fig. 3, the WLC bandwidth is about 350 
MHz and the empty cavity bandwidth is about 2.9 MHz, corresponding to a delay system 
bandwidth of about 173.5 MHz. The largest bandwidth achievable for the WLC depends on 
the mechanism used for producing the negative dispersion. We have shown that a bandwidth 
of ~21 GHz may be possible using double-peaked Brillouin gain in optical fiber under 
particular conditions [23]. 

A very important feature of this design is that the delay time is independent of the system 
bandwidth, and is determined simply by the time elapsed inside the region between the LWLC 
and the RWLC. For the result shown in Fig. 6, the delay-bandwidth product is nearly 

42 9 10. , which is well beyond the typical values achievable using conventional delay 

systems. As mentioned above, the delay time can be increased even more by using PRs with 
higher reflectivities, or by allowing for higher degree of distortion-free attenuation, thereby 
yielding a much higher value of the delay-bandwidth product. 

In conclusion, we show theoretically how a pair of WLCs can be used to realize a 
distortion-free delay system for a data pulse. Numerical simulations show that such a system 
can far exceed the delay-bandwidth constraint encountered in a typical data buffer employing 
low light. We also show that the pulse remains virtually undistorted during the process. 
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