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Abstract: In a white light cavity (WLC), the group velocity is superluminal 

over a finite bandwidth. For a WLC-based data buffering system we 

recently proposed, it is important to visualize the behavior of pulses inside 

such a cavity. The conventional plane wave transfer functions, valid only 

over space that is translationally invariant, cannot be used for the space 

inside WLC or any cavity, which is translationally variant. Here, we 

develop the plane wave spatio temporal transfer function (PWSTTF) 

method to solve this problem, and produce visual representations of a 

Gaussian input pulse incident on a WLC, for all times and positions. 
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It is well known that optical cavities can be used to control the group velocity of light. 

Various configurations of the cavities have been proposed to demonstrate slow-light or fast-

light. For example, a Fabry-Perot (FP) cavity has been investigated as a system for producing 

pulse delays [1]. Micro-resonators, such as coupled-resonator optical waveguides (CROWs) 

[2] and side-coupled integrated spaced sequence of resonators (SCISSOR) [3–5] have also 

been investigated for producing slow-light and fast-light. More recently, we proposed the use 

of so-called White Light Cavities (WLCs) [6–9], to realize a trap-door data buffer system 

where the delay time achievable far exceeds the limit imposed by the delay-bandwidth 

constraint encountered in a slow-light based data buffer [10,11]. 

Briefly, such a buffer consists of two WLCs in series, and works as follows. Each WLC is 

a high finesse cavity containing a medium inside, which has a negative dispersion when a 

control beam is applied to it, or virtually no dispersion when the control beam is turned off. 

Initially, the control fields for both WLCs are turned off, so that the medium inside each 

WLC has essentially no dispersion, and the cavity transmission band is very narrow. A data 

sequence with a spectrum that is much broader than this band, and is shifted from the cavity 

resonance frequency by an amount larger than the pulse bandwidth, is thus fully reflected by 

the first cavity. When the control beam for the first WLC is turned on, its transmission band 

becomes wide enough to transmit the data sequence fully, without any distortion. After the 

data stream passes the first WLC, its control beam is turned off again. The data sequence now 

bounces back and forth between the two inactive cavities, undergoing very small attenuation 

in each pass. The data stream can be released by activating the control field for either WLC 

[10,11]. 

When the transmission band of the WLC becomes very broad, the group velocity in the 

intra-cavity medium is close to infinity over this bandwidth. In order to understand properly 

the behavior of the data buffering system under this condition, it is important to visualize the 

spatial as well as temporal behavior of the pulse everywhere around the WLC: the reflected 

pulse, the transmitted pulse, and the pulse inside the cavity. In this paper, we use the transfer 

function method to realize this visualization. 

In the analysis of a pulse propagating through a cavity, the conventional approach 

considers only the temporal transfer function (TTF), which is defined as the ratio of the 

(complex) amplitude of the output field to that of an input field at a given frequency. In this 

method, one starts by determining the Fourier transform (FT) of the input pulse. The FT of 

the output is then given by the product of the transfer function and the FT of the input pulse. 
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Inverse Fourier transform (IFT) is then used to determine the temporal shape of the output 

pulse. The space after the cavity is invariant under spatial translation, meaning that an 

observer at any point after the cavity will see the same temporal profile of the transmitted 

pulse. Thus, it is not necessary to consider the spatial phase of each frequency explicitly. 

This is not the case inside the cavity. As a simple example to illustrate this, consider a FP 

cavity in vacuum, of length L, with the left mirror at z = zL and the right mirror at z = zR, so 

that zRzL = L. A pulse of temporal duration τ is moving from left to right, so that its spatial 

extent is cτ, where c is the speed of light in vacuum. Consider now two observers inside the 

cavity: A positioned at z = zL + a and B positioned at z = zRa. We assume further that a<<cτ, 

and cτ<<L. Assuming that each mirror has a high reflectivity, the pulse will undergo multiple 

bounces inside the cavity. The observer at A will never see interference between the forward 

and backward propagating pulses, while the observer at B will see such interferences for 

some durations. Thus, if we compute the temporal transfer function only for the total field 

inside the cavity, the distinction between the fields seen at these two locations will not be 

manifest. 

This constraint can be overcome by taking the spatial phase into account explicitly in 

constructing the transfer function, which yields what we choose to call plane-wave spatio-

temporal transfer functions, PWSTTFs. This is to be distinguished from what is 

conventionally known as spatio-temporal transfer function, STTF, which is used to describe 

the propagation of a pulsed image, where the spatial part is the FT of the point-spread 

function, addressing diffraction [12]. The PWSTTFs, which are functions of position as well 

frequency, are determined by first finding a self-consistent solution, at a given frequency, for 

a monochromatic plane wave of infinite spatial and temporal extents, and then determining its 

(complex) amplitudes before, inside, and after a cavity. The field before the cavity has two 

parts: one propagating to the cavity, in the right direction, denoted as Ein (incident field), and 

one propagating back from the cavity, to the left, denoted as Er (reflected field). The field 

inside the cavity also has two parts: one propagating to the right, denoted as Ef (inside field, 

moving forward), and one propagating to the left, denoted as Eb (inside field, moving 

backward). Finally, the field transmitted through the cavity is denoted as Eout. The PWSTTFs 

for the reflected field, the inside forward-moving field, the inside backward-moving field and 

the output field are then given, respectively, by Er/Ein, Ef/Ein, Eb/Ein, and Eout/E in. 

To use the PWSTTF approach for determining the propagation of these fields as functions 

of both space and time, we decompose an input pulse with a given starting position and a 

temporal shape into a sum of the Ein fields, properly phased with respect to one another. The 

PWSTTFs are then used to find the corresponding Er, Ef, Eb and Eout. Summing the STTFs for 

each of these four fields then yields the corresponding fields at all times and for all valid 

ranges of positions. Of course, this approach is generic, and can be applied to any situation, 

including an empty cavity. We first verify the prediction of this model by analyzing the 

behavior of a pulse passing through an empty cavity, and comparing the prediction of the 

output after the cavity with the one produced by the TTF method. We then apply the 

technique to the WLC. The output after passing through the cavity produced this way again is 

verified against the prediction of the TTF method. The resulting model allows us to visualize 

the behavior of the pulse as it propagates superluminally inside the WLC. 

The generic system we consider here is illustrated schematically in Fig. 1. A dispersive 

medium of length L is placed between two mirrors. For concreteness [13], we model each 

mirror to be a Bragg grating (BG), each with an intensity reflectivity R that is assumed to be 

constant over the bandwidth of a test pulse. The medium outside the cavity, on each side, is 

assumed to be non-dispersive, and of infinite extent. The origin of the z-coordinate is set to be 
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Fig. 1. Schematic illustration of a typical Fabry-Perot (FP) cavity of length L, containing a 
dispersive medium. We model the mirrors as Bragg gratings. The medium outside the FP is 

assumed to be non-dispersive. At t = t1, the peak of a test pulse is located at z = z1, moving in 

the positive z direction 

at a distance P from the left BG. The mean indices of the dispersive medium and the non-

dispersive medium are 
0n  and 

1n , respectively. When t = t1, a Gaussian pulse is centered at z 

= z1, and moves in the positive z direction. We decompose the pulse into monochromatic 

waves, calculate phase changes during the propagation through the FP cavity, and use IFT to 

find the resultant pulse envelope in z domain. To this end, we consider first a monochromatic 

input wave of unity amplitude, expressed as: 

        in in in 1 1 1E ,z, t exp j ; k z z t t         (1) 

where   is the angular frequency, and 1 1k n c , with c being the speed of light in 

vacuum. In this notation, in  represents the phase at an arbitrary spatio-temporal coordinates 

{z, t}, relative to the reference coordinates {z1, t1}. 

The wave is reflected by the BG on the left at z = P, and then propagates backward. At an 

arbitrary spatial point z, the reflected wave has accumulated a net spatial phase of 

     1 1 1 1 1k P k P k 2Pz z z z      . In addition, note that, according to the coupled wave 

theory [14,15], if a wave is reflected by a BG with an arbitrary Bragg-reflection coefficient, 

then the reflected wave is shifted in phase by 2  [16]. Furthermore, we assume that the 

BG thickness is infinitesimally small, leading to a Bragg spectral width much larger than that 

of the FP, so that the reflectivity, R , can be assumed to be uniform over the bandwidth of 

interest [16]. The reflected wave therefore can be written as: 

    r1 r1 r1 1 1 1

j
E ,z, t Rexp exp j ; k (2P z z ) (t t )

2


   

 
       

 
 (2) 

Note that r1 in(z P) (z P)    . 

A part of the wave is also transmitted through the left BG and propagates inside the FP 

cavity. It is reflected again by the right BG, and returns to the left BG. Therefore, we have to 

consider two sets of counter-propagating waves. The forward-propagating waves inside the 

cavity are given by the following infinite series summation: 

 
       m

f f d

m 0

f 1 1 d 1

E ,z, t Texp j R exp jm exp 2jmk L ;

k (P z ) k (z P) (t t )

  

 





   

     


 (3) 

where T is the transmittance (R + T = 1), and kd is the wave number in the dispersive medium 

so that  k n cd   . Note that f  contains two spatial phase terms: (i) the term 

1 1k (P z ) is due to the non-dispersive medium on the left side of the cavity, and (ii) the term 
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dk (z P) is due to the intra-cavity dispersive medium. Of course, 
f in(z P) (z P)    , as 

expected. The phases and amplitudes inside the summation account for the multiple bounces, 

taking into account the phase shift due to reflection from each BG. 

Similarly, the backward-propagating waves inside the cavity can be expressed as: 

 
     m

b b d

0

b 1 1 d d 1

E ,z, t T Rexp j R exp jm exp(2jmk L) ;

k (P z ) k L k (P L z) / 2 (t t )

m

  

  





   

        


 (4) 

Note that 
b  contains three spatial phase terms: (i) the term 

1 1k (P z ) is due to the non-

dispersive medium on the left side of the cavity, (ii) the term 
dk L  is due to first leg of the 

propagation from the left BG to the right BG, through the intra-cavity dispersive medium, and 

(iii) the term ( )dk P L z  is due to backward propagation through the intra-cavity dispersive 

medium after reflection from the right BG. Of course, 
b f(z P+L) (z P+L) / 2      , as 

expected, accounting for the extra phase shift due to reflection from the second BG. The 

phases and amplitudes inside the summation account for the multiple bounces, taking into 

account the phase shift due to reflection from each BG. 

After every bounce inside the cavity, the wave is transmitted through the left BG and then 

propagates in the ẑ direction. These beams, added together, produce the net additional 

reflected beam given by: 

 
     m

r2 r2 d

0

r2 1 1 d 1 1

E ,z, t T Rexp j R exp jm exp(2jmk L) ;

k (P z ) 2k L k (P z) / 2 (t t )

m

  

  





   

       


 (5) 

Note that the total reflected field is given by the sum of 
1rE and 

2rE . The various terms in 

2r can be interpreted in the same manner. As expected, we see that 

   2r bE z P T E z P   , and    2r bz P z P    . 

Similarly, using Eq. (3), the overall transmitted field outside the right BG can be 

expressed as: 

 
       m

out out d

m 0

out 1 1 d 1 1

E ,z, t Texp j R exp jm exp 2jmk L ;

k (P z ) k L k (z P L) (t t )

  

 





   

       


 (6) 

Note that    out fE z P L T E z P L     , and    out fz P L z P L      , as 

expected. Finally, we point out that the phase terms resulting from time evolution in Eqs. (1)–

(6) have the same sign (minus) to assure that the phase velocity is +c for inE , fE and outE , 

and c  for r1E , bE  and r2E . 

Summing the infinite series in the expressions above, and using Eq. (2), we find: 

  
 

 f f

d

T
E ,z, t exp j

1 Rexp j exp(2jk L)
 




 
 (7.a) 

  
 

 b b

d

R T
E ,z, t exp j

1 Rexp j exp(2jk L)
 




 
 (7.b) 
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  
 

 r2 r2

d

RT
E ,z, t exp j

1 Rexp j exp(2jk L)
 




 
 (7.c) 

    
2

r rp

p 1

E ,z, t E ,z, t 


  (7.d) 

  
 

 out out

d

T
E ,z, t exp j

1 Rexp j exp(2jk L)
 




 
 (7.e) 

At a first glance, these Eq. (7) may look like the conventional temporal transfer functions 

(TTF) found in a typical textbook in optoelectronics [17]. However, the key distinction here is 

the presence of the phase terms, which are functions of not only the temporal coordinate but 

also of position coordinates. To the best of our knowledge, these expressions have not been 

presented anywhere else before. 

Next, we consider a Gaussian pulse, centered at 
1z z at 

1t t , with a spatial half-width 

(at 1/e values) of 
0z . The amplitude of the spatial frequency spectrum of this pulse can be 

expressed as   2 2

0 0 0 0S k z 2 exp k k z 4         where 
0 0k c , k c . Each 

monochromatic component of this pulse acts as an input field of the type expressed in Eq. (1). 

Applying IFT and using /dk d c , we can now find the pulse everywhere in z-space 

 
1 0 i

i=in,r

0 z P, S z,t 1 2 k E ( ,z, t) kFor S d 




 
        

 
   (8.a) 

 
2 0 i

i=f,b

P z<P+L, S z,t 1 2 k E ( ,z, t) kFor S d 




 
       

 
   (8.b) 

 3 0 outz>P+L, S z,t 1 2 k E ( ,z, t) kFor S d 




       (8.c) 

In what follows, we assume, without loss of generality, a situation where 0 1n n 1  . 

First, it is instructive to discuss the pulse propagation in a non-dispersive intra-cavity 

medium. Figure 2 illustrates the pulse propagating along the z axis, as freeze-frames at 

different times. For illustration, we consider R = 0.7, T = 0.3, P = 500, L = 93, z1 = 200, z0 = 

10.3746, free spectral range (FSR) = 1.613MHz, and ω0 = 2π × 1.93 × 10
14

 s
1

 corresponding 

to the wavelength λ of 1550nm, where all distances are in meters. Thus, the left BG is at 

500Lz P  , and the right BG is at 593Rz P L   . To find the resonance condition for 

the cavity, it is important to consider the additional phase term due to the Bragg 

reflections:  exp j in the denominator of Eq. (7.c). Thus, the cavity resonates on the 

condition that 0 0L c(2q 1) (2n )   where q is a positive integer. To observe graphically 

the pulse inside the cavity, q is chosen to fulfill the condition that 0L>>z . 

In Fig. 2(a), the incoming pulse is shown at t 250 c . Figure 2(b) illustrates that for 

t 300 c , the pulse is reflected from the left BG. Note that the interference between inE  and 

r1E  is seen over 0 z P  . In Fig. 2(c), the incident pulse is split into two pulses after hitting 

the left BG: the wave given by r1E  produces the reflected pulse in 0 z P  , and the wave 

given by fE produce the forward-propagating pulse inside the cavity. For t 390 c , fE  is 
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Fig. 2. A propagating pulse shown as freeze-frames for (a) t 250 c , (b) t 300 c , (c) 

t 350 c , (d) t 390 c , (e) t 650 c . (f) Numerical simulation by the TTF method. 

The insets present expanded views of the interference patterns. In Fig. 2(e) and 2(f), the 

reference pulse (blue) propagates together with the first output from the cavity. Note that the 

left BG is at 500 Lz z  and the right BG is at 593 Rz z  . For convenience, we have 

also defined z2 = Pλ = zLλ, and z3 = P + L3 = zR3. 

reflected by the right BG and then propagates backward, resulting in the backward 

propagating intra-cavity field 
bE . The waves given by

bE  and 
fE  interfere around the front 

of the right BG, as displayed in Fig. 2(d). These interference patterns are on the scale of the 

wavelength of light, while the length scales we are considering are macroscopic; as such, the 

true pattern is masked by the coarseness of sampling. In order to show the pattern clearly, we 

plot the expanded views over 2 2z <z<z  and 3 3z <z<z   over a distance of one 

wavelength ( 1.55 m  ) in the insets of Fig. 2(b) and 2(d), respectively, where 2 Lz z    

is a position one wavelength ahead of the left end of the cavity, and 3z 590  is a position 

that is 3 meters ahead of the right end of the cavity. These parameters have no particular 

significance, and have been chosen for illustrative convenience only. Figure 2(e) illustrates 

that for t 650 c  the backward-propagating pulse ( bE ) within the cavity moves toward the 

left BG. The two pulses in sequence associated with outE  propagate with the separation equal 

to 
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Fig. 3. Propagation of a pulse shown as freeze-frames, for an intracavity fast-light medium 

with group index g 0.2n  , for (a) t 300 c , (b) t 350 c , (c) t 390 c , (d) 

t 410 c  with a reference pulse(blue). The insets present expanded views over one 

wavelength. (e) Output pulses and the reference in time domain. 

2L, which is the optical path resulting from a round trip inside the cavity. The leading pulse in 

the output pulse train is observed with no delay compared to the free-space propagating 

reference (blue) and with the intensity attenuation of 91% due to the cavity reflection. 

Note that in this simulation we have used a pulse bandwidth ( pulse ) that is a factor of 50 

larger than the bandwidth of the cavity ( FWHM ). Since the overlap between the pulse 

spectrum with the cavity transmission spectrum is negligible, the pulse essentially undergoes 

sequential reflections at the two BGs, without any significant multi-beam interference. As a 

result, we do not observe any noticeable distortion, nor delay. In order to verify this result, we 

have also determined the output pulse using the TTF method [1,10–12], as shown in Fig. 2(f). 

Here, we see two output pulses in series, with a temporal separation of 2L c , in agreement 

with the distance 2L  between the two output profiles in the spatial domain, shown in 

Fig. 2(e). 

We consider next the behavior of a pulse propagating through a fast-light intracavity 

medium, for various sub-unity values of the group index, gn . To produce anomalous 

dispersion, we consider dual gain peaks centered around ω0, the empty-cavity resonance 

frequency [6, 18]. The anti-symmetric profile for  n  allows us to set 
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  . Thus,  n   can be expressed in terms of a Taylor expansion 
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 . We employ the same cavity parameters as those used in Fig. 2, and 

consider only the first order dispersion (
01n ) in the Taylor expansion of  n  . 

Figure 3 illustrates the propagation of a pulse for 
g 0.2n  . At 300t c , the value of 

gn determines the distance between a front edge of the pulse and the right BG. The 

interference pattern over 
2 2z <z<z   are expanded in the inset of Fig. 3(a). The insets of 

Fig. 3(b)–3(d) illustrate the intracavity interference over 
4 4z <z<z  , where

4z 550  

represent a position near the center of the cavity. Comparing Fig. 3(a) with Fig. 2(b), both 

corresponding to 300t c , we can see the fast-light effect manifestly. In Fig. 2(b), there is 

no fast-light effect, and the pulse is not stretched. In Fig. 3(a), the group velocity is 

superluminal, and the front end of the pulse has almost reached the right BG. The intracavity 

fast-light medium also causes the counter propagating pulses to expand. Thus, the forward-

propagating pulse associated with 
fE and the backward-propagating pulse associated with 

bE  

interfere with each other over the entire spatial range inside the cavity, as illustrated in 

Fig. 3(b)–3(d). Figure 3(b) and 3(c) illustrate that the pulse train is composed of the reflected 

pulse associated with
r1E (the first pulse on the left of the cavity), a series of pulses resulting 

from 
r2E (remaining pulses on the left of the cavity) and outE on the right of the cavity. Of 

course, the separation in z-axis between the adjacent pulses corresponds to the optical path for 

one round trip inside the cavity i.e. 2 gn L . Figure 3(d) shows that on the right side of the 

cavity ( 593z  ) the first and the second pulses are advanced by 0 g(n n )L  and 
0 g(n 3n )L , 

respectively, compared to the free-space propagating reference, and the third pulse coincides 

with the reference, since 0 g(n 5n )L 0  . Note that g(2m+1)n L is the optical path in the 

intracavity medium where m is the number of round trips after the pulse hits the right BG for 

the first time. In Fig. 3(e), the TTF method is used to produce the output pulse train in time 

domain. The pulses appear with a repetition rate of 2 gn L c , in agreement with the spatial 

profiles shown in Fig. 3(d). By comparison with the reference, we find that the time 

advancement also agrees with the results displayed in Fig. 3(d). For example, the delay time 

between the first pulse and the reference is 0 g(n n )L c . 

Figure 4 illustrates the cases of g 0n  corresponding to the ideal WLC condition. In 

Figs. 4(a)–4(c), the portion of the pulse that is loaded into the intracavity fast-light medium 

passes instantly through the cavity. Subsequently, it shows up to the right side after the cavity 

(z>593) before the rest of the pulse enters into the cavity. Of course, such a fast movement 

inside the cavity is the obvious manifestation of gv   [19]. 

In order to understand the behavior of the pulse in this case, it is instructive first to 

consider the limit where the cavity mirrors are eliminated. In the simulation, this can be 

achieved simply by setting T = 1, R = 0 for each BG, corresponding to a free-space zone of 

infinite group velocity (ZIGV) from z = 500 ( Lz ) to z = 593 ( Rz ). The resulting profiles 

are shown in the upper insets of each Figs. 4(a)–4(c). As can be seen, when the pulse enters 

the ZIGV, it gets split immediately, with the front part of the pulse appearing outside this 

zone on the right. The amplitude of the field in the ZIGV becomes a constant, equaling the 

value of the pulse amplitude at the point of splitting. More explicitly, we denote by  f z the 

shape of 
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Fig. 4. Propagation of a pulse shown as freeze-frames, through an intracavity fast-light 

medium under ideal WLC condition ( gn 0 ) for (a) t 290 c , (b) t 300 c , (c) 

t 310 c , (d) t 350 c , The upper insets illustrate the case of a fast-light medium with 

gn 0  in free space. The lower insets show the views expanded horizontally close to z4 = 

550. (e) Numerical simulations for cavity output (black) and the reference (blue) in time 
domain, produced via the TTF method. 

the pulse, for 0gn n , at a time when it has crossed the point Lz z . Then, for 0gn  , we 

have: 

 
       

    

: ; : ;

:

L L R L

R R L

z z E z f z z z z E z f z

z z E z f z z z

    

               
 (9) 

The physical meaning of the flat profile inside the ZIGV can be understood by 

considering the fact that   gd d / d(n( ) ) d n cc      , where  is the phase shift 

due to the propagation through the medium. For gn 0 , we thus have d d 0   , so that 

 is constant. The value of the pulse envelope, for example ~0.2 at Lz z  as shown in the 

upper inset of Fig. 4(a), is determined by summing the constituent waves. If the phase 

differences among the waves before the ZIGV are preserved, the pulse envelope value then 
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does not change during the propagation through the ZIGV. As a result, the envelope value 

exhibits the height equal to that at 
Lz z , for the whole ZIGV, as illustrated in the inset of 

Fig. 4(a), is determined by summing the constituent waves. If the phase differences among 

the waves before the ZIGV are preserved, the pulse envelope value then does not change 

during the propagation through the ZIGV. As a result, the envelope value exhibits the height 

equal to that at 
Lz z , for the whole ZIGV, as illustrated in the inset of Fig. 4(a). 

This result can also be seen formally from Eq. (7.a), by setting R = 0, T = 1. We then get 

 f fE exp j , where 
f is the phase shift for each wave as it traverses the dispersive zone. 

For 0gn  , this phase shift is the same for each constituent wave, independent of frequency, 

as noted above. For the case of the cavity (i.e., 0, 1R R T   ), the resonance condition 

[
d2k L = (2m +1) ] is satisfied for each constituent wave, independent of frequency, for the 

ideal WLC condition of 0gn  . This can be seen by noting that  k n cd   that, so that 

      gk / 1/ c n 1/ c n 0d             , which is akin to the fact that when the group 

velocity becomes infinite, the wavelength (and therefore the wave number) becomes 

independent of frequency. As a result, we find from Eq. (7.a) that  f fE 1 T exp j , with 

the value of 
f being the same for each constituent wave. Thus, the pulse amplitude for the 

forward propagating pulse inside the cavity is also a constant, but larger by a factor of 1 T  

when compared to the case of free space propagation through the ZIGV. This enhancement is 

the same as what would be seen for a continuous wave passing through such a cavity on 

resonance, which results from constructive interference between the infinite number of 

bounces it undergoes. Here, the forward wave is moving at an effectively infinite velocity, 

thus carrying out the infinite number of bounces immediately, and yielding the amplitude that 

would result from the constructive interference of these bounces, since each frequency 

component is resonant. 

Consider next the backward-propagating wave, 
bE , as expressed in Eq. (7.b) for each 

constituent wave. Again, for 0gn  , each wave is resonant, independent of frequency, and 

the propagation phase, 
b , is the same for each wave, independent of frequency. Thus, within 

the ZIGV (i.e., within the cavity in this case), the reflected wave is also a constant. For each 

bounce, the backward-propagating wave is smaller than the corresponding forward 

propagating wave by a factor of R , due to the reflection from the right BG, and has 

relative, constant phase factor of exp( j / 2)  due to this reflection. However, just as in the 

case of the forward propagating waves, the backward propagating waves also undergo 

constructive interference between the infinite number of reflections immediately, forming a 

net wave which is smaller than the net forward wave, 
fE , by a factor of R , and differed by 

a constant phase factor of exp( j / 2) . Thus, the net field inside the cavity is the result of 

the interference between these two waves of constant amplitudes, producing a standing wave 

and a traveling wave (since the amplitudes are different). Of course, the amplitudes of these 

standing and traveling wave components change with time as the input pulse keeps moving 

past the entrance at Lz z , as can be seen in Figs. 4(a)–4(c). The intracavity net field can 

thus be expressed in general as:      L f bf z 1 T exp j R T exp j  
 

 . We plot in the 

lower insets the expanded views over 4 4z z z     where again 4 550z   is a point near 

the center of the cavity. Note that the maximum ( maxE ) of the oscillating field amplitude 
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corresponds to  Lf z 1 T R T 
 

 and the minimum (
minE ) 

to  Lf z 1 T R T 
 

. In particular, the lower inset in Fig. 4(b) indicates that for 

 Lf z 1 , 
2

2S z,t   oscillates between
2

minE 0.089  and 
2

maxE 11.24 . 

Another important aspect of the result shown in Fig. 4 is the absence of any reflection by 

the cavity. Of course, this follows from the fact that each constituent wave is resonant for the 

ideal WLC condition of 0gn  , as discussed above. We can also see this explicitly by 

considering the expressions for 
r1E  given by Eq. (2) and 

r2E given by Eq. (7.a), keeping in 

mind that the net reflected beam is given by the sum of these two. By setting 

d2k L = (2m +1)  on resonance in Eq. (7.c), we get  r2 r2E exp( j 2) Rexp j    where 

r2 1 1 1 1k (P z ) k (P z) (t t )         . Comparing this to Eq. (2), we see that 
r2 r1E E  , 

so that the net reflected field is zero. Since this conclusion is true for each constituent wave, 

there is no reflection by the ideal WLC. 

Finally, Fig. 4(d) illustrates that the pulse emerging from the ideal WLC (black trace) is 

advanced compared to a reference pulse (blue trace) propagating through a non-dispersive 

medium of index 
0n . The distance of advancement 0 g 0(n n )L=n L , as expected, meaning 

that the pulse suffers no time delay at all in crossing the WLC. In Fig. 4(e), we show the 

corresponding result in time domain, again calculated by using the TTF method. The advance 

in time compared to the reference pulse is in agreement with the result of Fig. 4(d). Of course, 

we would see the same amount of advancement, in time or space, if we did not use a cavity, 

but still used a dispersive medium with 0gn  . 

We note that this type of advancement using a free space medium cannot be used to 

violate causality for any real system [18, 20]; the same conclusion holds for an ideal WLC. 

The apparently unphysical nature of this advancement is attributed to the unavoidable 

limitation of our model, since the Gaussian input pulse has an infinite temporal extent. If it 

were possible to model the propagation of a pulse with a true front, we expect to find that the 

front of the pulse would never propagate faster than the vacuum speed of light. However, 

such a pulse has an infinite bandwidth, and cannot be studied using the spectral 

decomposition method employed here. This interpretation is essentially the same as what is 

offered in explaining the superluminal propagation of a Gaussian pulse envelope through a 

free-space fast-light medium. 

To summarize, in order to understand the behavior of a pulse inside a cavity, we have 

developed an approach that starts by finding a self-consistent solution for a monochromatic 

field of infinite spatial and temporal extents, and determine its amplitudes before, inside, and 

after the cavity. We then construct a Gaussian input pulse by adding a set of these waves, 

properly phased and weighted, to represent a moving pulse before the cavity. Adding these 

waves at various time intervals then yields the complete spatial profile everywhere, including 

before, inside and after the cavity. In particular, it reveals waves in both forward and 

backward directions, including multiple bounces occurring inside the cavity. This approach is 

generic, and can be applied to any situation, including an empty cavity. We first confirm the 

prediction of this model by analyzing the behavior of a pulse passing through an empty 

cavity, and comparing the prediction of the output with the one produced by the TTF method. 

We then apply the technique to a cavity containing a fast-light medium. The output pulse 

produced this way again agrees with the prediction of the TTF method. The resulting model 

allows us to visualize the behavior of the pulse as it propagates superluminally inside the 

cavity, and interferes with itself through multiple bounces. For the limiting case of a 

vanishing group index over the entire bandwidth of the pulse, an interference pattern is 

formed immediately after the pulse enters the cavity, with an output pulse emerging with no 
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time delay or distortion. The results obtained here illustrates the physical mechanism behind 

pulse propagation through a white light cavity, a process we have proposed earlier for 

realizing a high bandwidth, long delay data buffering system 
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