
Theoretical study on Brillouin fiber laser sensor 
based on white light cavity 

Omer Kotlicki,1 Jacob Scheuer,1,2,* and M.S. Shahriar2,3 
1 School of Electrical Engineering Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel 

2 Departments of Electrical Engineering and Computer Science, Northwestern University, Illinois 60208, USA 
3 Departments of Physics and Astronomy, Northwestern University, Illinois 60208, USA 

*kobys@eng.tau.ac.il 
www.eng.tau.ac.il/~kobys/ 

Abstract: We present and theoretically study a superluminal fiber laser 
based super-sensor employing Brillouin gain. The white light cavity 
condition is attained by introducing a phase shift component comprising an 
additional ring or Fabry-Perot cavity into the main cavity. By adjusting the 
parameters of the laser cavity and those of the phase component it is 
possible to attain sensitivity enhancement of many orders of magnitude 
compared to that of conventional laser sensors. The tradeoffs between the 
attainable sensitivity enhancement, the cavity dimensions and the impact of 
the cavity roundtrip loss are studied in details, providing a set of design 
rules for the optimization of the super-sensor. 
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1. Introduction 

Optical interferometers and resonators constitute among the most precise physical 
measurement approaches, rendering them key-components for numerous and diverse research 
fields [1,2]. The applications for such devices range from fundamental scientific studies 
requiring ultra-precision measurements [2–6] to biochemical sensing [7,8], navigation [9–11] 
and more. Interferometers and resonators utilize the ability to detect and measure accurately 
phase shifts that are induced by small changes in the optical path of the light in the device. 
While the physical causes for the optical path changes could be diverse (temperature, 
displacement, rotation, chemical effect, etc.), the detection mechanisms are similar. An 
interferometer makes use of interference between light passing through a disturbed and an 
undisturbed optical path to detect and measure the level of perturbation. A resonator utilizes 
the disturbance induced shift of its resonance frequency to quantify the disturbance. 

 

Fig. 1. Interferometric (a) and resonator-based (b) optical measurement schemes. 

We emphasize that although we clearly distinguish interferometers from resonators (two-
wave vs. multi-wave interference) the devices are based on similar physics. The origin for the 
resonance shift in a disturbed resonator is the spatio-temporal interference of the light in the 
cavity with itself. The reason for the clear distinction is that a resonator may include an active 
amplifying section and become eventually a self-oscillating device (laser). To date, most the 
interferometers and resonators employed for precise measurements and sensing are designed 
to exhibit linear response, i.e. the measured output depends linearly on the modifying quantity 
[1]. Figure 1 depicts representative interferometric and resonator-based optical sensing 
schemes. Although the specific illustrations concern refractive index measurements, similar 
architectures can be adapted for other types of measurements and sensing. 

In the interferometric scheme, Fig. 1(a), changes in the ambient refractive index modify 
the phase accumulated by the wave propagating in the exposed arm, resulting in intensity 
changes in the output signal, or in a wavelength-interrogation mode we measure frequency 
shifts in dips or peaks. In the resonator-based scheme, Fig. 1(b), the ambient index modifies 
the resonance wavelength of the cavity. In both cases, the important parameter is the slope of 
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the measured signal as a function of the measured quantity – the steeper the slope the higher 
the sensitivity and, hence, the accuracy of the measurement. 

Here, we focus on the white light cavity (WLC) effect [12–17] as a technique for 
substantially enhancing the sensitivity of an optical resonator based sensor to changes in the 
parameters of the environment, compared to a conventional laser sensor. In particular, we 
present and analyze a Brillouin based fiber laser implementation of a WLC ultra-sensitive 
sensor. Compared to the concepts presented previously [14,15], the novelty here is in all-fiber 
implementation of the WLC enhanced sensor, and the use of Brillouin gain for realizing the 
ring laser necessary for this implementation. This approach introduces new architectural and 
performance optimization issues that were not addressed in previous work. Furthermore, the 
all-fiber approach makes this device potentially simpler to realize, and opens up areas of 
application (such as strain sensing) that are not accessible in the systems proposed previously. 

It is important to understand that the enhanced sensitivity provided by the WLC (see 
section 2 below) does not lead to a corresponding improvement in the minimum measurable 
phase shift. This is because the accuracy of measuring the resonance wavelength depends on 
the cavity linewidth which is broadened by the WLC effect. In fact, the WLC is broadened by 
a factor that essentially matches the enhancement in sensitivity [13]. In order to avoid this 
problem it is necessary to use an active cavity (i.e. a laser). The laser linewidth is determined 
by several mechanisms and is generally substantially narrower than that of the cold cavity, 
thus allowing one to exploit the sensitivity enhancement of the WLC concept. 

2. White light cavity sensor 

For illustration purposes, consider the white-light Fabry-Perot cavity depicted in Fig. 2. The 
WLC structure [16,17] consists of a conventional resonator incorporating at least one intra-
cavity anomalous dispersive element. Figure 2 illustrates a generic optical cavity with length 
L/2, incorporating a dispersive section of length l/2. For a given frequency ω0, the phase shift 
accumulated in a single roundtrip is given by: 

 [ ]0
0 0

0

( ) ( ) ( )lL l n l
c

ωϕ ω ωΔ = − + ⋅  (1) 

where ln  is the index of refraction for the dispersive section. For simplicity it was assumed 

that the refractive index of the non-dispersive section is unity. On resonance, the total phase 
accumulated in a single roundtrip must be an integer number of 2π, i.e. Δφ(ωres) = 2πm. In 
order to achieve the WLC condition we need Δφ to remain 2πm regardless the frequency, at 
least within a certain vicinity of ωres: 

 [ ]
0

( )
( ) ( ) ( ) 2res

res l resL l n l m
c

ω ωϕ ω ω ω ω π+ Δ
Δ + Δ = − + + Δ ⋅ =  (2) 

Expanding Eq. (2) and subtracting Eq. (1) from it, keeping only the leading terms in Δω, 
yields the negative slope necessary for the WLC condition: 

 ( ) ( ) 1
res

l
l res res g res

dn
n n L l

d ω

ω ω ω
ω

+ = = −  (3) 

where ng is the group index of the section l at ωres and the dispersion relation of that section 
close to resonance was expanded to the first order in Δω. Note, that Eq. (3) clearly indicate 
that ng must be smaller than one or even negative in order to satisfy the WLC condition, 
which means that it must have anomalous dispersion. 

To extend the condition Eq. (3) to a general case of WLC we write Eq. (2) in a more 
general form where the “fast-light” section in the cavity is assumed to add a frequency 
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dependent phase shift and it is assumed that the rest of the cavity consists of a (positive) 
dispersive medium. Thus, our generic superluminal laser includes an additional phase element 
which introduces anomalous phase shift to the cavity. This phase shift ideally compensates 
the normal dispersion of the cavity such that: 

 p
0

( )
( ) ( ) ( ) 2res

res res resn L m
c

ω ωϕ ω ω ω ω θ ω ω π+ Δ ′Δ + Δ = + Δ ⋅ + + Δ =  (4) 

where ωres is a resonance frequency of the cavity, np is the refractive index of the normal-
dispersion medium inside the cavity, L' is the cavity length, θ is the phase response of the 
phase element, m is an integer, and Δω is an arbitrary frequency shift. Expanding Eq. (4) to 
first order in Δω, i.e. θ(ωres + Δω)≈ωres + dθ/dω⋅Δω and np(ωres + Δω)≈np(ωres) + dnp/dω⋅Δω 
yields: 

 p p pg FSR
0 0

( ) 2 /
res

res res

d L L
n dn d n

d c cω

θ ω ω ω π ω
ω

′ ′
 = − + = − = − Δ   (5) 

where npg is the group index of the positive dispersion medium and ΔωFSR is the free spectral 
range of the cavity without the fast-light phase section. Equation (5) provides a general 
condition for the phase shift needed to attain the WLC condition. 

 

Fig. 2. An optical cavity incorporating a negative dispersion section. 

The basic parameter determining the sensitivity, S, of a cavity based sensor is the ratio 
between the change (δL) in its effective length, and the corresponding shift (δω) in the 
resonance frequency: S = δω/δL. The larger S is, the higher the sensitivity of the sensor. For a 
conventional cavity, the sensitivity is given by a simple expression: 
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p res res

pg res

n
S

L L n

ω ωδω
δ ω

⋅
= = −
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 (6) 

where np and npg are respectively the effective and group indices of refraction for the normal 
dispersive section of the cavity. For a cavity incorporating a negative slope phase component, 
Eq. (6) is modified, yielding: 

 
0
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⋅
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Note, that for the WLC condition Eq. (5), the sensitivity Eq. (7) approaches infinity. 
Nevertheless, it should be clear that in practice infinite sensitivity cannot be attained because 
of higher order dispersions of the cavity medium and the phase component. 

3. Fiber laser implementation 

The most critical issue in the “fast-light” laser is, of course, the realization of a phase 
component with the desired response. Such phase elements have been proposed and 
demonstrated using vapor cells which were optically pumped in a precise configuration. 
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Nevertheless, such realization is less appropriate for compact devices suitable for deployment 
in the field. Alternatively, the desired phase component can be realized by a Fabry-Perot or a 
ring resonator, as illustrated in Fig. 3. 

 

Fig. 3. (a) Ring resonator and (b) Fabry-Perot interferometer based negative dispersion 
components. 

The maximal negative phase slope is attained at the resonant frequency of the ring 
satisfying Lrk0neff = 2πm and Fabry-Perot satisfying 2Lfpk0neff = 2πm accordingly. The phase 
response of the phase element depicted in Fig. 3 is given by: 

 
( )

( ) ( )
2

2 11 2

2 2

1 2 2 11 2 2 1

1 sin1 sin( )
tan( )

1 1 cos1 (2 ) 1 (2 ) cos( )

−−
= − = −

+ − +− − − − −

r r

r r r r

φκ κ φ
θ

φκ κ κ κ φ
 (8) 

where φ = Lrneffω/c = 2Lfpneffω/c, κ1 and κ2 are the power coupling coefficients as shown in 
Fig. 3(a) and r1 and r2 are the mirror reflection coefficients as shown in Fig. 3(b). Both Ring 
Resonator and Fabry-Perot implementations are mathematically analogous with κ1,2 = 1-r1,2

2 
and Lr = 2Lfp. Equation (8) provides the phase shift introduced by the additional cavity. In 
order to attain a WLC, Eq. (8) must satisfy Eq. (5). Introducing the derivative of Eq. (8) with 
respect to the frequency at resonance into Eq. (5) provides the relations between κ1 and κ2 
needed to achieve the WLC condition and similarly for r1 and r2: 

 ( )( )
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( ) ( )
2

2 11 2

2 2
1 2 2 11 2 1 2

2 11
'

1 11 1 1 1 1

fpr
r r LL

L
r r r r

κ κ
κ κ κ κ

−−
= =

+ − +− − − − − −
 (9) 

From Eq. (9) it is possible to extract a relation between κ1 and κ2 for a given ratio between 
the cavities lengths: M = L'/Lr = L'/2Lfp. Introducing α2 = r1 = 1-κ1 and β2 = r2 = 1-κ2, yields 
the following relation between the coefficients: 

 
2

2 2 2 2 21 1
1 (1 [1 ] ) 4

2
M

M

αβ α α α α
α
 −= + − − + − − − 
 

 (10) 

From Eq. (9) it is clear that precise control of the coupling/mirror reflection coefficients of 
the phase element is needed. Although such control is difficult in integrated optics, tunable 
fiber couplers are available and fiber Bragg grating mirrors can be tension-controlled to 
produce the necessary reflection coefficient. In addition, fiber optics possesses extremely low 
loss which is important because the phase element also introduces losses. However, a fiber 
based laser is inherently long, exhibiting a small free spectral range. Because of the loss 
associated with the phase element it is very likely that the lasing mode would not be the one 
satisfying the WLC but one of the “regular” modes. To overcome this problem it is necessary 
to provide a relatively narrow gain - at least narrower than the FSR of the main laser cavity. 
Because of the narrow linewidth needed, the almost obvious choice of gain process is 
Brillouin scattering, with gain linewidth narrower than 30MHz, and simple tunability of the 
peak frequency by means of strain or pump wavelength. 
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Fig. 4. Schematic of a SBS based superluminal fiber laser; Inset: effective gain and phase 
profiles. 

Figure 4 illustrates a schematic of a superluminal Brillouin ring laser setup. The 
continuous wave (CW) pump beam is launched into the ring laser via a circulator, thus 
ensuring it would not resonate within the ring laser. For the Brillouin amplification, which 
occurs for a probe in the opposite direction to the pump beam, the circulator forms a closed 
ring cavity which can lase if the gain is sufficient. The phase element is introduced into the 
cavity to satisfy the WLC condition for the lasing frequency (not the pump). The inset shows 
schematically the effective gain profile and the corresponding phase profile. The additional 
cavity introduces a notch in the center of the Brillouin gain profile, resulting in a negatively 
sloped phase profile [12,14,15] 

Brillouin scattering is a nonlinear process where a forward traveling electromagnetic wave 
interacts with the transmission medium to generate acoustic phonons and a scattered, 
backward traveling, electromagnetic wave. Beyond a certain threshold, the phonons interfere 
constructively and travel through the medium as an acoustic wave. The acoustic wave causes 
small periodic density variations in the medium producing a refractive index grating that 
further stimulates the scattering process. The backward traveling wave generated in this 
process of stimulated Brillouin scattering (SBS) is downshifted by νB = 2nva/λ compared to 
the frequency of the forward traveling wave (where n is the effective refractive index of the 
medium, va is the speed of sound in the medium and λ is the vacuum wavelength of the 
forward traveling wave). The linewidth of the scattered wave is determined by the acoustic 
absorption of the medium. In optical fibers, νB ≈10.8GHz while the linewidth Δν ranges from 
10 to 30MHz. By using a cavity with a FSR larger than Δν (roughly L'<10.5m) while 
pumping the cavity using a strong tunable laser source, in a setup similar to Fig. 4, substantial 
gain can be provided for the desirable WLC cavity mode, overcoming losses and favoring it 
from the other cavity modes. As a concrete example, consider a 10m long fiber cavity, with a 
roundtrip loss (due to a combination of the transmission losses from the circulator and the 
phase component) of approximately 1.5dB (see also section 5). Using the Brillouin gain 
coefficient of a single mode fiber (γ = 0.14 m−1W−1 [18]), the threshold gain of a single pass 
comes out to be ~1.41, corresponding to a pump power of ~225mW. 

To achieve the optimal conditions for superluminal lasing, the resonance frequencies of 
both the main ring cavity and the phase element cavity are set to the peak frequency of the 
Brillouin gain. Because both cavities are formed by fibers, this requirement means that their 
circumferences must be related by a rational fraction: L'/Lr = m1/m2, where m1 and m2 are 
integers. The resonance frequencies are set to the peak frequency of the gain in order to 
optimize the lasing conditions and avoid changes in the lasing frequency due to the Brillouin 
lineshape dispersion. 
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4. Sensitivity enhancement in Brillouin ring fiber laser 

In order to evaluate the sensitivity enhancement of the fast-light laser (compared to a 
conventional laser) we calculated the shift in the lasing frequency due to a small modification 
in the main ring cavity L'. Following this modification the resonance frequency must be 
recalculated taking into account the dispersion of the Brillouin gain and (for the superluminal 
laser) the dispersion of the phase element. Designating the frequency shift in a conventional 
Brillouin laser by Δωc and that in a superluminal laser by Δωs, we define the sensitivity 
enhancement as ξ = Δωs/Δωc. 

We assume that without the cavity length perturbation the superluminal laser is resonating 
at frequency ωres satisfying: 

 p
0

( ) ( ) 2res
res resn L m

c

ω ω θ ω π′⋅ + =  (11) 

When the cavity is perturbed, the new lasing frequency satisfies: 

 
p

0

( )
( ) ( ) ( ) ( ) 2

+ Δ ′+ Δ ⋅ + + + Δ + Δ + Δ =res s
res s res s Br res sn L L m

c

ω ω
ω ω δ θ ω ω θ ω ω π  (12) 

where ΔθBr is the phase shift caused by the dispersion of the saturated Brillouin lineshape. 
Equation (12) satisfies only the phase condition for the lasing frequency and must be 
supplemented by the amplitude condition. It should be noted that although the sensitivity 
depends on the resonance condition, the amplitude condition determines the necessary gain 
(pump level) for lasing which, in turn, affects the dispersion properties of the saturated gain, 
ΔθBr in Eq. (12). Note, that for a conventional laser, the equations are identical except that θ = 
0. 

To properly account for ΔθBr, in is necessary to solve for the laser threshold conditions 
and employ the relations between the real and imaginary part of the susceptibilities [19]: 

 0 Br2 ( )χ χ ω ω ω′ ′′= − Δ  (13) 

where ω0 is the frequency at which the Brillouin gain peaks (set to the resonance frequency of 
the WLC) and ΔωBr is the linewidth of the Brillouin gain. χ’ and χ” are respectively the real 
and imaginary parts of the dielectric susceptibility. When the system is lasing, the gain 
compensates the overall roundtrip losses of the cavity. Denoting the roundtrip transmission as 
T, then χ’ and χ” are given by: 

 
0

0

0 Br

ln( )

ln( )
2

l

l

T k nL

T

k nL

χ
ω ωχ

ω

′′ = −
−′ = −

Δ
 (14) 

where k0 and n are respectively the wavenumber and the refractive index of the fiber. 
Equation (14) indicates that the dispersion of the Brillouin gain modifies the propagation 

coefficient in the fiber according to the following relation: 

 0
0

Br

ln( )
2

l

T
k n

L

ω ωβ χ
ω
−′Δ = − =

Δ
 (15) 

The Brillouin gain phase shift is then given by: 

 0
Br

Br

2 ln( )T
ω ωθ

ω
−

Δ = ⋅
Δ

 (16) 

Note that because the resonance frequency of the laser is set to the gain peak, the Brillouin 
gain introduces a linear phase shift which for the WLC condition Eq. (5) is equivalent to a 
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modification of the laser roundtrip length. For example, assuming ΔfBrillouin = 40MHz and T = 
0.9, the effective additional length induced by the Brillouin phase shift is ~1m. 

In order to get a broader view of the dependence of ξ on the laser parameters, we calculate 
the enhancement for all the combinations of κ1 and κ2 and for various ratios between L' and Lr 
(a Fabry-Perot based arrangement is completely analogous, as shown above). Figure 5 depicts 
the optimal relation between the coupling coefficients for L'/Lr of 1/3, 0.5, 1, 2, 3, and 4 as 
calculated from Eq. (12). For the simulations, the chosen parameters were L' = 10m, ΔfBrillouin 
= 40MHz, and “central” wavelength of 1.55μm. The ring laser circumference was chosen in 
order to ensure a single cavity mode within the Brillouin gain line. Note that as the cavity of 
the phase element becomes shorter, the optimal κ2 for a given κ1 becomes smaller, pushing 
the phase element closer to the critical coupling regime. However, it should be clear that the 
closer the phase element cavity to critical coupling, the larger the loss induced by this element 
(i.e. lower T in Fig. 3). 
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Fig. 5. Relationship between the coupling coefficients for maximal sensitivity enhancement. 

The excess roundtrip loss introduced by the phase component is the transmission loss of 
the through port on the additional resonator, given by: 

 
2 2
1 2

2
( ) 1

(1 )resT
κ κω

αβ
= −

−
 (17) 

Figure 6 depicts the sensitivity enhancements and the corresponding cavity roundtrip 
transmission (or, equivalently, excess loss) induced by the phase component. It is clear that 
larger sensitivity enhancements go hand in hand with larger cavity losses. This is because 
higher enhancement levels require steeper phase shifts which, in turn, correspond to deeper 
notches in the transmission function of the phase component. The excess loss limits the 
minimum measurable amount of perturbation. As such, it is important to minimize this loss 
while maximizing the degree of enhancement. This issue is explained, and discussed in some 
detail, in Section 7. 
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Fig. 6. Enhancement (solid) and roundtrip transmission (dashed) of superluminal lasers with 
optimal κ1 and κ2 relations for maximal enhancement. 

 

Fig. 7. Enhancement-roundtrip loss tradeoffs for superluminal laser with various cavity length 
ratios. 

In view of Fig. 6, we note that there are many combinations of parameters which can 
provide any given sensitivity enhancement. Therefore, it is possible to optimize the laser and 
attain, for example, lower threshold levels (e.g. lower power consumption) by properly 
choosing the length of the cavity comprising the phase component and the coupling 
coefficients. It is, therefore, instructive to obtain the design curves connecting the sensitivity 
enhancement with the corresponding cavity roundtrip loss. Figure 7 depicts the loss-
enhancement tradeoff for various cavity length ratios. Clearly, shorter phase element cavities 
provide smaller roundtrip losses for a given enhancement level. Nevertheless, for relatively 
lower enhancement levels (which correspond to lower losses), there is no real difference 
among the phase elements. Non-negligible loss differences are visible only for enhancement 
levels which exceed 70 which correspond to cavity roundtrip transmission of ~0.65. 
Moreover, an order of magnitude improvement (ξ~15) can be achieved with excess losses of 
only 3% per roundtrip, thus rendering the introduction of the additional phase component a 
very attractive method for achieving more sensitive sensors. 
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5. Nonlinearity of the sensitivity enhancement 

Ideally, the sensitivity enhancement in the WLC configuration is independent of the induced 
change in the cavity optical length. In practice, a perfectly linear negative phase slope is 
difficult to achieve (particularly using an additional cavity), resulting in a satisfaction of WLC 
condition at a single frequency point. As a result, the enhancement of the sensitivity depends 
on the actual shift δL in the cavity length and is expected to decrease for larger δL. 
Specifically, the sensitivity enhancements depicted in Figs. 6 and 7 were found for δL = 
0.1nm but it is expected to increase for smaller changes and to decrease for larger changes. 

In order to estimate the nonlinearity of the sensitivity enhancement we include the 
Brillouin phase shift as an additional effective length of the fiber laser. We assume the sensor 
and the additional cavity are designed to satisfy the WLC condition at the resonance 
frequency according to Eq. (9). For small changes in the cavity length we expand Eq. (12) 
using Eq. (8) to the third order in δω and δL, yielding the following Eq. for δω: 
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and we introduced Ri = 1-κi. Assuming the sensor is set to the WLC Eq. (9), then Eq. (18) 
yields a simple cubic equation for δω which can be readily solved: 
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 (19) 

Note, that the shift in the resonance frequency is not a linear function of the cavity length 
change δL (the measured quantity) which means that the sensitivity enhancement is not a 
constant but rather depends on the measured quantity: 
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Figure 8 illustrates an example of the sensitivity enhancement dependence on the detected 
quantity. The parameters of the sensor are L'/Lr = 2, κ1 = 0.5 and κ2 = 0.7414, corresponding 
to an optimal configuration. As shown in the figure, the sensitivity enhancement increases 
dramatically for small δL, exceeding 400 for δL~10pm. However, the sensitivity enhancement 
drops rapidly as δL is increased although the enhancement for δL≈1nm still exceeds 20. 
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Fig. 8. Dependence of the sensitivity enhancement on δL. 

6. Design tradeoffs 

 

Fig. 9. Dependence of the sensitivity enhancement on the cavity length of the phase 
component. Inset: zoom in on smaller δL levels. 

From Eq. (20) it is clear that shorter additional cavities provide larger enhancement levels, 
although the relation is not linear because M also affects the relations between κ1 and κ2, as 
can be seen from Eq. (11). However, the improvement in the sensitivity enhancement is 
accompanied by larger excess roundtrip losses induced by the phase component. Figure 9 
depicts the dependence of the sensitivity enhancement on δL for several values of M, where 
κ1 = 0.03 and κ2 for each M is found from Eq. (11). The inset zooms in on smaller δL range 
(in linear scale). The enhancement is shown in a logarithmic scale in order to clarify the 
difference between the various M levels. Figure 10 depicts the excess roundtrip losses 
induced by the phase component. For M = 1 the phase component introduces excess losses of 
30% per roundtrip while for M = 5 the loss exceeds 50% per roundtrip. Thus, although the 
phase components with shorter cavities provide larger enhancement level, the substantial 
excess loss they induce may pose a serious problem. 

Another important parameter which affects the enhancement level and the excess loss is 
the combination of coupling coefficients. As κ2 is determined directly by κ1, it is the choice of 
κ1 which eventually determines the enhancement and the excess loss. Figure 11 depicts the 
sensitivity enhancement as a function of δL for several coupling coefficients (κ1). The inset 
depicts the corresponding excess losses. Decreasing κ1 results in an overall lower sensitivity 
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enhancement factor but also lower excess losses. Therefore, Fig. 11 provides the necessary 
design tradeoffs allowing for optimizing and balancing between desired enhancement levels 
and acceptable roundtrip losses. 

 

Fig. 10. Dependence of the excess roundtrip loss on the cavity length of the phase component. 

 

Fig. 11. Dependence of the sensitivity enhancement on the coupling coefficients. Inset: 
corresponding excess roundtrip losses. 

7. Some practical considerations 

Conceptually, the introduction of the additional phase component provides substantial 
enhancement in the sensitivity of the sensor. However, a practical and precise measurement 
of resonance frequency shifts is not trivial and requires special care. For example, it is 
advantageous to perform a relative frequency measurement of such shifts compared to a fixed 
reference frequency. In the Brillouin fiber laser implementation, such reference is readily 
available – the frequency of the pump laser. Beating the signal of the fiber laser with the 
pump laser provides a difference frequency in the range of ~10.8GHz, depending on the exact 
resonance of the cavity. Changes in the cavity length will be accompanied by modifications 
of the frequency of the beat signal. 

Nevertheless, one of the major problems of any optical sensor is achieving selective 
sensitivity, i.e. canceling the impact of other mechanisms that can modify the optical length 
of the laser cavity which basically act as noise sources. In a WLC based laser sensor, the 
sensitivity of the lasing wavelength to such, undesired, effects (e.g. vibrations, acoustic and 
thermal noise, etc.) is enhanced by the same amount as the sensitivity to changes in the 
desired property. This means that the linewidth of a WLC laser is expected to be noisier, and 
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hence broader, than that of a similar non-WLC laser. An appropriate approach to overcome 
this problem is to compare the lasing properties of the sensor to that of an identical laser 
located in similar environment (and experiencing the same negative dispersion) but is not 
subjected to the process which is being detected. Since the sensor studied here is based on a 
fiber ring laser, the almost straightforward method to implement such configuration is to 
realize an additional and similar laser which is wound on the same spool as the sensor and is 
not subjected to the perturbation being detected. Using heterodyne detection of the signals 
emerging from the fiber lasers it is possible to cancel out the common noise components, 
allowing for the detection of the desired signal. 

The nonlinear relation between the resonance shift and the change in the cavity length 
causes the WLC sensor to be substantially more sensitive for smaller δL. As shown in Fig. 8, 
the sensitivity enhancement varies over an order of magnitude for δL ranging between 10pm 
to 1nm. Such nonlinear response makes it difficult to use the induced resonance shift as a 
direct measure to the change in the cavity length in an “open-loop” configuration. Thus, in 
order to take advantage of the large sensitivity enhancement at small δL, it is advantageous to 
operate such sensor in a “closed-loop” configuration in which a counter modification in the 
cavity length is introduced in order to return the resonance frequency to its “original” value. 

Finally, we consider the effect of excess loss introduced by the addition of the phase 
component. For the configuration described above, where the signal is observed by measuring 
the beatnote between two nearly identical lasers, each experiencing negative dispersion, the 
accuracy of the frequency measurement is expected to be limited by quantum noise only. In 
this limit, the fluctuation in the frequency can be expressed as [20–22]: 
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 (21) 

where we have added the uncorrelated quantum noise from the two lasers. Here, P is the 
output power of each laser, T is the measurement time, ω is the laser frequency, and Q is the 
quality factor of the laser resonator: 

 Q L cωτ ω′= = Λ  (22) 

where τ is the lifetime of a photon in the laser cavity, and Λ is the loss per roundtrip. For 
example, if a roundtrip loss is 3%, we have Λ = 0.03. 

The minimum measurable value of δL, which is proportional to the perturbation of 
interest, is a key measure of the efficacy of the sensor, is proportional to this frequency 
fluctuation. Explicitly, we can express this as: 
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where S is the sensitivity defined in Eq. (6), and ξ is the enhancement factor defined in the 
first paragraph of Section 4. Thus, we see that for a given sensitivity and a measurement time, 
the minimum measurable perturbation is proportional to Λ/(ξP1/2). For a given Brillouin pump 
power available, the power of the sensing laser, P, generally decreases with increasing Λ. The 
exact variation of P as a function of Λ depends on the nature of gain saturation. In the limit of 
a lasing condition where loss equals unsaturated gain, P is proportional to 1/Λ. Taking this as 
the limiting case, we can see that the minimum measurable perturbation is proportional to (Λε 
/ξ), where the exponent ε has a value somewhere between 1 and 3/2. This dependence should 
be used as a guide in determining the optimal operating condition for the sensor. Of course, 
we must also ensure that the loss is small enough so that the available pump power is above 
the lasing threshold. Note that in Eq. (23) the sensitivity enhancement parameter, ξ, itself 
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depends on δL. Specifically, ξ increases with decreasing δL. Thus, Eq. (23) has to be solved in 
a self-consistent manner. Numerically, this can be done by evaluating the right hand side 
(RHS) of Eq. (23) for decreasing values of δL until it (the RHS) matches the value of δL. 

As an example, we calculate δLmin for a 1 m WLC fiber laser with intrinsic losses of 5% 
per revolution where the pump is set to attain a value of P = 10mW inside the cavity in the 
absence of the additional phase component. Figure 12 shows δLmin as a function of κ1 for a 
WLC laser where M = 1 and κ2 is set to meet the WLC condition. For comparison, δLmin for a 
conventional fiber laser with the same length and 1 sec averaging time is ~4.4x10−17m. As can 
be seen, the minimal measurable δLmin is smaller by nearly 8 orders of magnitudes for a 
relatively large range of coupling coefficients κ1. This is a highly attractive property because 
it means that the precise values of parameters are relatively unimportant as long as the laser 
lases and the WLC is satisfied. 

 

Fig. 12. Dependence of the δLmin on the coupling coefficient κ1 

Several additional issues must also be considered in the design of the laser. First, 
nonlinear effects (Kerr, Raman, four wave mixing, etc.) might modify the properties of the 
laser. However, because the cavity is short (10m), the finesse is relatively low and the lasing 
power in the cavity is modest (F~10 and P = 10mW in the above example), the impacts of the 
Kerr effect and Raman scattering are not expected to impair significantly the performance of 
the sensor, as discussed below. Four wave mixing process is also inefficient because the 
pump and signal are counter-propagating and the pump is not resonant in the cavity (single 
pass). Second, control of polarization is also required in order to ensure single mode 
operation. This can done either by introducing a polarization controller to the cavity (as in 
Fig. 4) or by using a polarization maintaining fiber. Finally, Rayleigh scattering in the lasing 
frequency cannot build up because of the circulator located in the cavity forcing uni-
directional lasing. 

It should be emphasized that each of these effects produces a constant bias (e.g. a constant 
shift in the resonance frequency due to the Kerr effect) as well as fluctuations. A constant bias 
can be taken into account, and plays no role in limiting the sensing ability of the proposed 
device. On the other hand, the fluctuation, due in turn to random variation in the relevant 
parameters, is equivalent to noise, which may limit the minimum measurable perturbation. As 
a general rule, in order for the sensor to reach its optimal sensitivity it is necessary to suppress 
all classical noise sources, including those due to fluctuations in nonlinear effects, below the 
quantum noise limit, by careful control of the system. As an example, let us consider the 
impact of power fluctuations through the Kerr effect. The highest optical power in the scheme 
is that of the pump, which should be of the order of ~200mw. Based on the nonlinear 
refractive index and the effective area of single mode fibers [23], reducing the frequency 
fluctuations due to intensity noise below the quantum limit, as given by Eq. (21) above, 
requires the pump fluctuations to be below 2mW. Thus, the pump intensity should be 
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stabilized to a level of ~1% which is very easy to achieve. Similar conclusions apply to the 
other nonlinear effects mentioned above. Thus, these non-idealities are unlikely to have a 
major impact on the measuring abilities of the proposed scheme. 

8. Conclusions 

“Fast-light” based lasers can provide an excellent platform for enhancing the sensitivity of 
optical sensors. We show that the sensitivity of Brillouin laser sensors can be increased very 
significantly by inserting a cavity based phase element in the laser cavity. Higher 
enhancement levels are correlated with larger cavity roundtrip losses, which might increase 
the minimum measurable δL. Nevertheless, we find that because of the rapid increase in 
sensitivity enhancement for small cavity length perturbation, δLmin can be reduced by as much 
as eight orders of magnitudes compared to that of conventional laser sensors for a wide range 
of parameters (such as loss level) as long as lasing is attained. 

We study the dependence of the enhancement level on the detected quantity and find that 
it is highly nonlinear. The sensitivity is large for small δL and decreases rapidly when δL is 
increased. This property of the WLC laser stems from the fact that the phase response of the 
additional cavity is nonlinear and, therefore, can set the laser to the WLC condition only at a 
single frequency. In the study presented here, the resonance frequency of the cavity 
comprising the phase component is set to that of the main cavity in order to attain maximal 
sensitivity enhancement. Nonetheless, it is possible to detune the resonance of the phase 
component from that of the main cavity and attain broader enhancement (in terms of δL) for 
lower peak enhancement level. These and related variants of the proposed scheme will be 
investigated further in the future. 

We also study the impact of the various parameters of the phase component on the 
achievable sensitivity enhancement. A clear tradeoff, which can be regarded as a general rule, 
is that larger enhancement level (for a given δL) is accompanied by larger roundtrip loss. This 
relation is important because larger losses are expected to increase the minimal measurable 
δL. The overall sensitivity enhancement and excess losses are determined by phase 
component coupling coefficients and cavity length. Larger coupling coefficients provide 
higher enhancement factors but also larger excess losses. The length of the phase component 
cavity is also important: shorter cavities can provide larger sensitivity enhancements which 
are, again, accompanied by higher losses. Nevertheless, the impact on the minimal 
measurable perturbation is relatively small because of the large enhancement levels at small 
perturbations. 

An experimental demonstration of the proposed scheme, utilizing a non-resonantly 
pumped 10.5m long Brillouin laser and an equally long additional cavity which is connected 
to the main cavity with tunable coupler is currently in progress. Such WLC based laser sensor 
can potentially exhibit substantially higher sensitivity that conventional laser sensors. The 
solid-state, fiber optics based implementation thereof, with a narrow linewidth Brillouin gain, 
provides a robust and light-weight system which is convenient for field deployment. 
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