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a b s t r a c t

We study the possibility of realizing white light cavities (WLCs)—cavities which essentially resonate over
a continuous band and not at discrete frequencies, by utilizing linearly chirped Bragg reflectors (LCBGs)
for phase compensation. Analytical and numerical analyses show that this goal cannot be achieved
because the reflection of a specific frequency by a LCBG cannot be modeled as occurring at the position
where the Bragg condition is satisfied. The accumulated effect of multiple scatterings at different
locations along the LCBG produces a positive group delay, preventing the realization of a WLC using this
approach. We also present a generic, filter theory based, argument showing that any phase component
that exhibit a negative group delay necessarily has a corresponding dip in its amplitude response. The
implications of this conclusion on the limitations and design rules of WLC based devices are discussed in
details.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

A white light cavity (WLC) is a unique type of resonator which
is designed to resonate over a broad, continuous range of frequen-
cies. This is in contrast to conventional cavities which resonate at
discrete frequencies determined by their optical roundtrip length.
The WLC concept exhibits unique properties which render it
scientifically interesting as well as attractive for various applica-
tions. One of the most important properties of WLC is the
elimination of the traditional relation between the linewidth of
the cavity and its quality factor. In contrast to conventional
cavities, a WLC possesses a broader linewidth than that of a
conventional cavity with the same finesse [1,2]. In addition, the
sensitivity of the lasing frequency of a WLC based laser to changes
in the cavity length is substantially higher than that of conven-
tional cavity based lasers. The combination of wide bandwidth on
one hand and large finesse on the other is highly attractive for
various applications, primarily in sensing and telecommunication.
WLC based schemes have been proposed for enhanced gravita-
tional waves detection [3], sensing [4,12] and for trap-door data
buffering with a large delay-bandwidth product [5,6].

The key element in the realization of a WLC is a dispersive
phase compensation mechanism having a negative phase slope
ll rights reserved.
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with respect to the frequency (larger phase shift for lower
frequencies) [12]. This mechanism equates the phase accumulated
in a roundtrip by each frequency component, setting it to a
multiple integer of 2π. It should be emphasized that the negative
phase slope required for the realization of WLCs should not be
confused with negative group velocity dispersion which is com-
monly employed for dispersion compensation in optical commu-
nications. Attaining the WLC conditions requires negative group
delay (i.e. “superluminal” group velocity) and not negatively sloped
group delay. Various approaches have been proposed and studied
for the realization of such phase compensation mechanism, such
as dual-pump Raman and Brillouin gain profiles [7–9], Brillouin
absorption line [9], four wave mixing [10], and an intra-cavity
resonator [4,11,12].

All of these approaches rely on the negative phase shift which
is accompanied by a notch in the transmission spectrum due to the
Kramers–Kronig (KK) relations, implying that attaining the WLC
condition imposes additional constraints in the cavity that may be
undesired [11,12]. Here, we explore an alternative approach
employing linearly chirped Bragg gratings (LCBGs) as phase
compensation mechanism. The intuitive rationale behind this
approach is to exploit the fact that the reflection of different
wavelengths effectively occurs at different positions along the
gratings, and design gratings such that the cavity is effectively
longer for lower frequencies. Consequently, the roundtrip phase
accumulation would be frequency independent and a WLC would
be formed. We find, however, that contrary to simple intuition,
such LCBGs cannot be designed and that the accumulated effect of
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multiple scatterings at different locations along the LCBG leads to
an overall positive group delay, thus impeding the formation of a
WLC. The rest of the paper is arranged as follows. In Section 2 we
present in details the proposed concept and particularly the design
of LCBGs as frequency dependent reflectors. In Section 3 we
present an unsuccessful attempt to realize a WLC utilizing LCBGs.
In Section 4 we provide a filter-theory based argument which
explains the outcome of Section 3 and outlines the limitation and
necessary conditions for attaining a frequency dependent reflector
which is appropriate for this task. In Section 5 we discuss the
results and summarize.
2. WLC employing frequency-dependent reflectors

The main idea underlying the WLC concept is that the differ-
ence between the phases accumulated by different frequencies is
compensated by a properly tailored, dispersive, intra-cavity med-
ium or component. In such an arrangement, the roundtrip phase,
ϕ, is frequency independent, i.e. dϕ/dω¼0.

Consider a Fabry–Perot (FP) cavity of length L, which incorpo-
rate frequency dependent reflectors (FDRs): rj ¼ jrjjexpði∅rj Þ and
tj ¼ jtjjexpði∅tj Þ (j¼1, 2, see Fig. 1). In particular, we are interested
in controlling the phase response of the reflectors in order to
attain a WLC. The frequency response of the cavity is straightfor-
wardly given by

Eout=Eout ¼ jt1t2jexpði∅t1 Þexpði∅t2 Þexpðin0Lω=cÞ
1−jr1r2jexpði∅r1 Þexpði∅r2 Þexpð2in0Lω=cÞ

ð1Þ

where n0 is the index of the medium comprising the cavity and c is
the speed of light in vacuum. Hence, the cavity power transmis-
sion Tc¼ |Eout/Ein|2 is

TC ¼
jt1t2j2

1þ jr1r2j2−jr1r2j cos ðΦtotalÞ
ð2Þ

where Φtotal ¼ ϕr1 þ ϕr2 þ 2n0ωL=c. Note that Φtotal is composed of
three phase terms: the phases of the reflectors ϕr1 and ϕr2 and the
roundtrip propagation phase in the cavity, 2n0ωL=c. For simplicity,
we assume that the two reflectors are identical, i.e. ϕr≡ϕr1 ¼ ϕr2 ,
ϕt≡ϕt1 ¼ ϕt2 , |r|≡|r1|¼ |r2|, and |t|≡|t1|¼ |t2|. Therefore, Tc can be
rewritten as T2=½1þ R2−R cos ðΦtotalÞ� where T ¼ jtj2; R¼ jrj2.
A resonance frequency of the FP cavity, ω0, must satisfy
Φtotal(ω0)¼2mπ (m being an integer). The shift in the total phase
accumulated by a frequency deviating from ω0 by Δω is given by

ΔΦtotal ¼Φtotalðω0þΔωÞ−Φtotalðω0Þ
¼ 2 φrðω0 þ ΔωÞ−φrðω0Þ þ

n0ΔωL
c

� �

¼ 2
n0ΔωL

c
n0 þ

cφrl

L

� �
ð3Þ

where ϕrl ¼ ∂ϕr=∂ωjω ¼ ω0
. Eq. (3) employs a first order Taylor

expansion of ϕr(ω) around ω0. The phase shift (Eq. (3)) can be
canceled for every frequency if we design the reflectivity of the
reflectors such that ϕrl¼−n0L/c over a certain bandwidth around
ω0. Ideally, such negatively sloped linear phase shift satisfies
Fig. 1. Schematic illustration of FP cavity based WLC.
resonance condition for all frequencies (infinite bandwidth). In a
realistic system, however, higher order dispersion of ϕr(ω) would
limit the WLC bandwidth.
3. FDR implemented by linearly chirped Bragg grating (LCBG)

A natural candidate for the realization of FDRs is a pair of
linearly chirped Bragg gratings (LCBG). The periodicity of the
gratings of an LCBG is not constant but changes along the structure
of the gratings. Because we are interested in compensating the
larger phase shifts of higher frequencies, we need to have
effectively a longer cavity for lower frequencies. A wave with
wavelength λi is expected to be reflected primarily from the area in
the reflector satisfying the Bragg condition, d¼(m+½)λi (d being
the grating periodicity and m being an integer). Thus, the period of
the LCGB should increase with the position of the effective
reflector (see Fig. 2).

To analyze the Bragg reflection in LCBGs we define an effective
optical path length Λi as the effective propagation distance from
which a wave with wavelength λi is completely reflected. Λi can be
viewed as the position of an effective metallic mirror which can
replace the LCBG for wavelength λi, where it is desired to have
larger Λ for longer wavelengths.

Because the grating period is linearly chirped, the Bragg
condition can be written as d(z)¼(m+½)λi(z), where z is the optical
axis, implying that different wavelengths are reflected from
different positions in the LCBG. Thus, Λi, the periodicity of the
grating corresponding to λi, increases with wavelength, as illu-
strated in Fig. 2(a), and therefore, the LCBG should be able to
provide the necessary phase shift for the realization of a WLC. This
conceptual approach is also supported by the results of Ref. [13].
Fig. 2(b) illustrates a FP cavity with length L which is formed by
two LCBGs. The LCBGs are assumed to be identical and designed to
be negatively chirped. To attain the WLC condition, the parameters
of LCBGs such as chirping rate should be designed such that Λi

satisfies 2Λi+L≡Leff¼mλi for all wavelengths λi.
To attain the reflectivity of a LCBG we write the electric field in

the grating as a superposition of forward and backward-
propagating waves with amplitudes a(z) and b(z), respectively
(see Fig. 3). The complete field in the LCBG is given by Ttotal(z)¼a
(z)eikz+b(z)e−ikz. The reflection coefficient at z¼−l is, therefore,
r¼b(−l)/a(−l)e2ikl where k¼n0ω/c is the wave number, n0 is the
average (unperturbed) index of LCBG which is assumed to be equal
to that of the cavity. The index profile of the LCBG varies along the
z-axis, such that n(z)¼n0+δn(z). The perturbation δn is given by
δn(z)¼2n0β cos[θ(z)] where β is the modulation amplitude and θ
(z)¼αz2/2+κz where κ is the modulation frequency at z¼0 and α is
Fig. 2. LCBG based WLC realization: (a) three different wavelengths (λ1oλ2oλ3)
are reflected at different locations inside the grating region, (b) schematic illustra-
tion of a Fabry–Perot (FP) cavity of length L formed by a pair of LCBGs.
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the chirping parameter. Note, that for α¼0, δn converges to the
conventional, constant period, grating profile. Following [13], the
reflectivity r is given by
r¼ expðð1=2Þiαz20Þ
ik0β

Fðiη; ð1=2Þ;−ðiα=2Þðlþ z0Þ2Þ−β2k20ρðlþ z0ÞF ð1=2Þ þ iη; ð3=2Þ;−ðiα=2Þðlþ z0Þ2
� �

ρFð−iη; ð1=2Þ; ðiα=2Þðlþ z0Þ2Þ−ðlþ z0ÞFðð1=2Þ−iη; ð3=2Þ; ðiα=2Þðlþ z0Þ2Þ
ei2kl ð4aÞ
ρ¼ −Fðiη; ð1=2Þ;−ðiα=2Þðl−z0Þ2Þ
β2k20ðl−z0ÞFðð1=2Þ þ iη; ð3=2Þ;−ðiα=2Þðl−z0Þ2Þ

ð4bÞ

Fða; b; xÞ ¼ ∑
∞

n ¼ 0

an
bn

xn

n!
; a0 ¼ 1; b0 ¼ 1; an ¼ aða−1Þ⋯ða−nþ 1Þ;

bn ¼ bðb−1Þ⋯ðb−nþ 1Þ ð4cÞ

where z0¼(2k−κ)/α≡2q/α, η¼β2k0
2/(2α) and k0¼n0ω0/c≡κ/2 for a

first order Bragg grating. The region of the LCBGs is assumed to be
−l≤z≤l. z0 can be interpreted as the effective reflection point of the
field with the wavenumber k [12] and is related to the effective
optical path length Λ(λ), defined in Fig. 2, as Λ¼z0+l. Clearly, Λ is
frequency dependent and the LCBG provides a frequency depen-
dent phase shift. The reflection phase of the LCBG is given by
ϕr¼ϕLCBG+2kl and the total reflectivity is r¼exp(iϕLCBG+2ikl) [15].

To attain a WLC, the phase accumulated due to conventional
propagation must be compensated by the LCBGs. It is constructive
to represent the phase shift of the LCBG as being equivalent to the
phase accumulated due to propagation through a medium of
length 2l with an effective index, neff, such that ϕr¼2lneffω/c. Note,
that neff is frequency dependent. The corresponding group index is
given by ng¼neff+ω∂neff/∂ω¼c/2lϕrl [21]. Thus, to obtain the WLC
condition this group index must satisfy ng¼−L/2ln0 (for two
identical LCBGs).

The next step is to identify a parameter space in which the
LCBGs can satisfy the WLC condition, i.e. ϕr1 ¼ −n0L=c. Fig. 4
depicts an example for the reflectivity and the group delay for
both negatively and positively chirped grating for n0¼1.45,
Fig. 3. Field propagates along z¼−l∼l. a(−l) and a(l) are the input and the
transmitted field, respectively. b(−l) is the reflected field.

Fig. 4. Reflection (a) and group delay (b) of LCBG calculated according to Eq. (4a). Red
interpretation of the references to color in this figure legend, the reader is referred to t
l¼5�10−4 m, β0¼6.7�10−4, k0¼6�106 rad/m and α¼76�
106 rad/m2. The absolute value of the reflectivity |r|2 is identical
in both chirping cases (see Fig. 4(a)). The group delays, on the
other hand, are mirror images of each other, which is in agreement
with the results of Ref. [13]. Note that ∂ϕr/∂ω40, i.e. positive
group delay is attained in the high reflectivity regime correspond-
ing to |r|2≈1, for both negatively and positively chirped grating.
Moreover, the obtained group delay in this regime is almost
identical for both positive and negative chirpings. In order to
identify a negative group delay regime, a thorough numerical
search has been conducted over the parameter space of LCBGs
(modulation depth, chirping rate and grating length).

Fig. 5 depicts the minimal group delay in the LCBG reflection
band as a function of the chirping parameter α and the grating
modulation depth β for a given grating length 2l. Group delay
maps calculated for both longer and shorter grating lengths were
practically identical to that shown in Fig. 5. As shown in the figure,
the attained group delay is positive for all the values of the
parameters in the scan range. The group delay does decrease as
the modulation depth is increased but remains positive.

To verify (4a)–(4c) as well as the results presented Fig. 5, we
have calculated numerically the reflectivity of the LCBG using a
transfer matrix method (TMM) [15,16]. For the calculation, we
model the gratings by many piecewise constant sections which are
much smaller than the grating period. In each section, the field is a
superposition of forward and backwards propagating plane waves.
By applying the appropriate boundary conditions at the interface
of successive sections we can get a relation between the fields in
these sections in the form of a transfer matrix. From the product of
these matrices it is possible to extract the reflectivity of the
structure at each frequency. Fig. 6 depicts the reflectivity and
group delay obtained by the TMM. For the calculation, the LCBG
structure is divided into 64N sections (N being the nearest integer
to ln0/λ0) corresponding to the optical path length due to each
section where λ0¼2πc/ω0. The results of the TMM analysis were
found to be identical to those of the analytical approach presented
in Fig. 4 and at the high reflectivity band (|q|≤4000) the group
delay is indeed found to be positive.

The difficulties in obtaining a negative group delay using
LCBGs, in contrast to Ref. [13], are rather unexpected. Although it
would be naïve to expect the position of the “effective”mirror for λi
solid line: αo0, dashed line: α40. The parameters are defined in the text. (For
he web version of this article.)
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to be at the point where the gratings periodicity satisfies the Bragg
condition for that wavelength, it is reasonable to assume that
negative chirping would be manifested by some level of negative
group delay. The fact that the resulting group delay is actually
positive indicates that the chirping of the grating is not necessarily
the dominant mechanism in the determination of the effective
reflection point, i.e. the position of the “effective” mirror. Fig. 7
illustrates the position of this “effective” mirror (calculated accord-
ing to the group delay) as a function of the wavelength for the
positively and negatively chirped grating of Figs. 6 and 4. For
comparison, the effective mirror position for non-chirped gratings
(but with identical index modulation depth) is overlaid on the
figure. Clearly, within the reflector bandwidth the position of the
“effective” mirror is essentially more remote for shorter wave-
lengths, even for the negatively chirped grating, which is in
contrast to what might be expected based on the chirping profile.
It seems that the chirping merely introduces a bias on the effective
position of the mirror which is negative (positive) for negative
(positive) chirp parameter α. The magnitude of the bias is
determined by the magnitude of the chirping parameter α; where
larger α yields larger bias.

The dependence of the effective mirror position on the wave-
length (Fig. 7) indicates that the underlying idea of utilizing
negatively chirped grating for achieving effectively longer cavities
for longer wavelengths does not work. Despite the negative chirp,
the LCBG generates longer cavities for shorter wavelength, thus
increasing the phase difference of normal propagation instead of
compensating it. The primary difference between positively and
negatively chirped gratings is essentially an overall bias of the
effective mirror position, with respect to non-chirped gratings,
were the sign of the bias depends on the sign of the gratings.
Fig. 5. Minimal group delay in the LCBG reflection band. The grating length is
2 mm and the center wavelength is 1.52 μm.

Fig. 6. Reflection (a) and group delay of LCBG calculated by TMM. Red solid line: αo
interpretation of the references to color in this figure legend, the reader is referred to t
This outcome stems from the non-zero bandwidth of Bragg
reflection originating from the finite modulation depth of the
refractive index. The reflection bands of the apparently distinct
reflectors composing the LCBR overlap, thus impairing the intui-
tively expected negative phase profile. Finally, we would like to
point out that the incorrect result in ref [13] stems from an
inadvertent error in defining phase shifts of the optical fields as
functions of coordinates of the grating [14].
4. Is there a fundamental problem?—a filter theory approach

The failure to attain a negatively sloped phase profile from the
LCBG raises the question whether there is a fundamental problem
or we have simply made an unfortunate choice of parameter
space. Negative slope phase profiles have been demonstrated
previously by taking advantage of the KK relations [7,9], which
are the relationships between the real and imaginary parts of the
refractive index. Unfortunately, achieving negative slope phase
profile using this approach requires a dip in the amplitude transfer
function which reduces the Q-factor of the (white light) cavity and
its bandwidth. This is in contrast to the LCBG which intuitively
should provide a flat amplitude transfer function and a negatively
sloped phase response.

It is convenient to consider the LCBG as a causal and stable
linear system (or filter) which operates on an optical signal and,
thus, can be analyzed by the tools of signal processing theory.
Linear systems theory has its own counterpart to the KK relation in
the form of the Hilbert transform. The phase response of a causal
and stable system can be uniquely extracted from its amplitude
response if the system has minimal phase, i.e. if the zeros of the
0, dashed line: α40. The parameters are identical to those used for Fig. 4. (For
he web version of this article.)

Fig. 7. Effective mirror position with respect to the grating edge within the
reflection bandwidth of the LCBGs. Dash-dot magenta—no chirp, dashed red—
positive chirp, solid blue—negative chirp. The gratings parameters are as in
Figs. 4 and 6. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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transfer function H(ω) of the system are within the unit circle
[17,18]. This relation is given by

HðωÞ ¼ exp αðωÞ þ iϕðωÞ½ �

ϕðωÞ ¼ 1
π

Z ∞

−∞

αðω−ω′Þ
ω′

dω′ ð5Þ

Note that for a system to be causal and stable, it is not required
to satisfy this additional constraint. In such a system, however, the
phase response cannot be uniquely determined by the amplitude
response.

A straightforward example for such system is the all-pass filter
which can be implemented in optics by the Gires–Tournois
interferometer. This interferometer is similar to the well-known
Fabry–Perot interferometer except that one of the mirrors has
100% reflectivity. As a result, the magnitude of the reflectivity of
the interferometer is unity at all frequencies but the phase
response is not constant as might be expected by applying the
KK relations or the Hilbert transform. The reason for that is that
the all-pass filter is not a minimum phase filter because its zeros
are not on the left hand side of the complex S plane.

An important property of minimum phase filter (or any mini-
mum phase linear system) is that it also exhibits the minimal
possible group delay, i.e. for a given amplitude response, the
system which exhibits the minimal group delay is the minimum
phase system and, therefore, satisfies the KK relations. This
property has a direct impact on the attempt to realize a transfer
function combining negative slope phase profile and flat, close to
unity, amplitude profile.

For simplicity, we restrict the analysis to systems with ampli-
tude responses that are symmetric around a central frequency ω0.
Let us assume that we have a reflector with a flat top amplitude
response (like the LCBG for example). The group delay of the
minimal phase filter, possessing the minimal group delay, is
proportional to the derivative of ϕ(ω) with respect to ω. A well-
known property of the Hilbert transform is that the derivative of
the transform of a function equals the transform of the derivative
of the function

dϕ
dω

¼ 1
π

Z ∞

−∞

α′ðω−ω′Þ
ω′

dω′¼−1
π

Z ∞

−∞

α′ðω′Þ
ωþ ω′

dω′ ð6Þ

where α′ is the derivative of α with respect to ω. Let us consider a
generic, minimal phase, band-pass filter centered at a frequency
ω0 and bandwidth Δω, as illustrated in Fig. 8, and use Eq. (6) to
extract the properties of its phase response. Note that Fig. 8
depicts the logarithm of the amplitude response, i.e. α in Eq. (5).
In addition, because we consider a generic bandpass filter, we note
that α′ is monotonically decreasing, i.e. α″o0 for all ω. As the
Hilbert transform of a shifted function is shifted as well
Fig. 8. α (blue) and the corresponding α′ (green) of a generic minimal phase
bandpass filter centered at ω¼0. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
[H αðωÞð Þ ¼∅ðωÞ ⇒ H αðω−ω0Þð Þ ¼∅ðω−ω0ÞÞ], we can consider the
filter as centered at ω0¼0. Fig. 8 also illustrates the derivative of
αwhich is positive for ωo0 and negative for ω40. The calculation
of the group delay (Eq. (6)) is essentially a convolution of α′ with
1/ω, which integrates over the shifted and frequency inverted α′
multiplied by 1/ω. Note that the result of Eq. (6) is positive for all
values of ω. At ω¼0 (i.e. at the center of the filter), the integrand is
a product of two anti-symmetric function which is positive at
all ω′, thus yielding a positive group delay.

Let us now consider the case of ωo0. As illustrated in Fig. 9, a
section of the positive part of the frequency inverted α′ is multi-
plied by a negative section of 1/ω′, thus yielding a negative
contribution to the integral (this section is marked in Fig. 9). Note
that in this case it is not obvious that the overall integral yields a
positive contribution. To verify that, we separate Eq. (6) to its
positive and negative parts

−
Z ∞

−∞

α
0 ðω0 Þ

ωþ ω0 dω
0 ¼ −

Z 0

−∞

α0ðω0Þ
ωþ ω0 dω

0 þ
Z ∞

jωj

α0ðω0Þ
ωþ ω0 dω

0 þ
Z jωj

0

α0ðω0Þ
ωþ ω0 dω

0
( )

ð7Þ

where the last term in the RHS of Eq. (7) is the negative
contribution. In order for Eq. (7) to be positive (as we claim), the
first two terms in the RHS of Eq. (7) must be larger than the
absolute value of the last term (keeping in mind that ω is
negative). To show that Eq. (7) is indeed positive for any ω, we
consider a part of the integral Eq. (7)

I¼ −
Z jωj

0

α0ðω0Þ
ω0−jωjdω

0−
Z 2jωj

jωj

αðω0Þ
ω0−jωjdω

0 ð8Þ

Note that ω is assumed to be negative. Introducing ω”¼ω‘−|ω|
and changing the integration boundaries yields

I¼ −
Z 0

−jωj

α′ðω″þ jωjÞ
ω″

dω″−
Z jωj

0

α′ðω00 þ jωjÞ
ω00 dω00

¼
Z jωj

0

−α′ðω″þ jωjÞ þ α′ðjωj−ω″Þ
ω″

dω′ ð9Þ

Because −α′ is a monotonically increasing function, I is neces-
sarily positive and therefore Eq. (7), which includes only positive
contributions in addition to I, is also essentially positive.

A similar argument applies for positive values of ω. We can,
therefore, conclude that the group delay of such minimal phase
filter is essentially positive. Fig. 10 depicts a plot of the Hilbert
transform (or phase response) of α corresponding to a bandpass
filter and the resulting group delay τd. The apparently negative
group delay close to edges of the frequency window is a numerical



Fig. 10. Phase response (blue) and the corresponding group delay (red) of a generic
minimal phase bandpass filter centered at ω¼0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 11. Group delay (red) and amplitude transfer function (blue) of a flat-top filter
incorporating a notch at the center of its pass-band. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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artifact stemming from the finite frequency range used for
calculating Eq. (6) (see also Appendix A).

The important outcome of the argument above is that the
group delay associated with a minimal phase bandpass filter is
positive. However, any other bandpass filter must possess larger
group delay than that of the minimal phase filter, and therefore
must have a positive group delay as well. The minimal attainable
group delay from such a filter is zero, which can be achieved for a
filter having a completely flat response over the whole spectrum,
i.e. a filter having α′¼0. An example for such minimal phase filter
is an ideal perfect metallic mirror. Thus, it is impossible to realize a
causal and stable flat top reflector which provides a negative
group delay, which explains our failure to obtain such a filter
using LCBGs.

In order to attain a negative group delay, for example at ω¼0, it
is necessary to get α′ to obtain negative values at least for some
region at ωo0 and positive values at ω40, which essentially
generates a dip in the transmission function. To illustrate this
point we plot in Fig. 11 the amplitude transfer function and the
corresponding group delay of a filter similar to that depicted in
Fig. 10 where a narrow notch was introduced at the center of the
pass-band. A negative group velocity region is indeed formed
around the deepest point of that notch. Note that a peak at ω¼0
would increase the group delay making it even more positive. It is
important to understand that the existence of a notch in the
transfer function is a necessary but not sufficient condition for
attaining negative group delay. Such a notch must provide
sufficient negative contribution to Eq. (6) to overcome the positive
part of the integral. Thus, the outcome of this analysis is of
fundamental significance as it implies that any realization of a
white light cavity requires an element having a dip in its
amplitude response. This, in turn, introduces an inherent limit
on the actual achievable bandwidth of any WLC.
5. Discussion and summary

The important outcome of the research presented here is that
any realization of a negative group delay component poses some
constraints on its amplitude response. For example, using filter
theory based argument we show that a negative group delay
device cannot possess a flat amplitude response—an outcome
which we have demonstrated for a specific implementation
utilizing LCBGs. Instead, it is essential to have a notch in the
amplitude response of such a component in order to attain a
negative group delay.

This fundamental result introduces significant implications to
WLC based devices and systems, especially when considering the
structure of the negative group delay component (e.g. the LCBG
studied here). Generally speaking, there are two primary and
generic approaches for achieving an amplitude transfer function
exhibiting a “notch”. The first approach includes the incorporation
of an element with an effective absorption line. A straightforward
implementation of such a component consists of two Bragg
reflectors centered at different wavelength but with overlapping
slopes. The main drawback of this type of implementation is that it
introduces inherent loss into the phase components and conse-
quently reduces the Q-factor and the bandwidth of the WLC in
which it is incorporated.

The second generic approach to attain the necessary amplitude
response (and hence, the desired phase response) is by introdu-
cing a dual peak gain profile as demonstrated in [19,20]. Negative
group delay can be formed in the notch located between the gain
peaks and facilitates the satisfaction of the WLC condition within
that spectral range. Compared to the passive (loss-only based)
approach, the incorporation of gain seems to overcome the main
drawback which is often associated with negative group delays—
loss, thus allowing for the realization of WLCs having high
Q-factors. However, the incorporation of gain has its own draw-
backs, in particular the additional noise which is inherent to any
gain mechanism. Depending on the application, additional noise
can be a significant problem. Furthermore, it is in general difficult
to realize a WLC with sufficient bandwidth for applications such as
data buffering [7] while suppressing lasing of adjacent longitudi-
nal modes of the cavity.

In conclusion, we studied the possibility of using a frequency
dependent phase implemented by LCBG in order to realize a WLC.
Contrary to the straightforward intuition, we were unable to find a
set of design parameters for which the desired phase response (i.e.
negative group delay) can be attained. Although a negative phase
slope can be attained at a discrete set of frequencies, the overall
(continues) group delay, even in this case, remains positive. Based
on control and filter theory we have presented an argument
showing that it is fundamentally impossible to attain a reflector
(or any linear and causal system) exhibiting simultaneously a flat
amplitude frequency response and a negative group delay. This
conclusion is of significance because it implies that any realization
of a white light cavity inherently requires an element having a
non-uniform amplitude transfer function which contains a dip.
This is a fundamental result which may introduce important
constraints on the utilization of WLC based components in optical
devices.



Fig. A1. Dependence of the group delay calculated by the Hilbert transform of the
frequency calculation window. Dashed black—log plot of the amplitude transfer
function of the filter.
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Appendix A

The theoretical argument presented in Section 4 shows that the
group delay associated with a minimum phase and smooth
bandpass filter (exhibiting no local transmission dips) should be
positive for all frequencies. Nevertheless, the group delay of such
filter, numerically calculated by the filbert transform exhibits
negative group delays outside the pass band (see Fig. 10). We
believe these spurious negative delays stem from numerical
artifact caused by the finite frequency range used for the calcula-
tion. To verify that, we plot in Fig. A1 the group delays of the filter
calculated according to Eq. (6) for various frequency calculation
windows. A log scale plot of the filter transmission is super-
imposed for comparison reasons. Clearly, as the calculation win-
dow is decreased (corresponding to less accurate group delay
calculation), the negative group delay regions are pushed towards
the pass-band of the filter. Moreover, it should be emphasized that
the filter amplitude transfer level at these spurious negative group
delay regions drops below 10−130, thus rendering the accuracy of
the group delay calculation in these regions quite problematic.
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