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The Liouville equation governing the evolution of the density matrix for an atomic/molecular system is expressed in
terms of a commutator between the density matrix and the Hamiltonian, along with terms that account for decay and

10 redistribution. To find solutions of this equation, it is convenient first to reformulate the Liouville equation by defining a
vector corresponding to the elements of the density operator, and determining the corresponding time-evolution matrix.
For a system of N energy levels, the size of the evolution matrix is N2 ×N2. When N is very large, evaluating the
elements of these matrices becomes very cumbersome. We describe a novel algorithm that can produce the evolution
matrix in an automated fashion for an arbitrary value of N. As a non-trivial example, we apply this algorithm to a

15 15-level atomic system used for producing optically controlled polarization rotation. We also point out how such a code
can be extended for use in an atomic system with arbitrary number of energy levels.

Keywords: optically controlled birefringence; multi-level coherent process; novel computational algorithm

1. Introduction

For some situations in atomic and molecular physics, it is
20 necessary to consider a system with many energy levels,

such as excitation involving many hyperfine levels and/or
Zeeman sublevels. The Liouville equation that describes
the evolution of the density matrix is expressed in terms
of a commutator between the density matrix and the

25 Hamiltonian, as well as additional terms that account for
decay and redistribution [1–4]. To find solutions to this
equation in steady state or as a function of time, it is con-
venient first to reformulate the Liouville equation by
defining a vector corresponding to the elements of the

30 density operator, and determining the corresponding time
evolution matrix. To find the steady-state solution in a
closed system, it is also necessary to eliminate one of the
diagonal elements of the density matrix from these equa-
tions, because of redundancy. For a system of N atoms,

35 the size of the evolution matrix is N2 ×N2, and the size of
the reduced matrix is (N2− 1) × (N2− 1). When N is very
large, evaluating the elements of these matrices becomes
very cumbersome. In this paper, we describe an algorithm
that can produce the evolution matrix in an automated

40 fashion, for an arbitrary value of N. We then apply this
algorithm to a 15-level atomic system used for producing
optically controlled polarization rotation.

The paper is organized as follows. In Section 2, we
introduce the algorithm, using a two-level system as an

45 example. In Section 3, we verify the algorithm with a
common three-level Raman system, and also show how

to generate a time-independent Hamiltonian for any
system by inspection alone. In Section 4, we show how
to generalize this to a system with arbitrary number of

50levels. In Section 5, we use this algorithm to solve a
15-level atomic system used for producing optically
controlled polarization rotation. In appendices, we
include explicit Matlab codes for two-, three-, and
15-level systems and also a non-intuitive, but faster

55computational method for our algorithm.

2. A two-level system

To illustrate the basic idea behind the algorithm, we first
consider the simplest case: a two-level system of atoms
excited by a monochromatic field [3], as illustrated in

60Figure 1. Here, �hx1 and �hx2 are the energies of levels
1j i and 2j i, and ω is the frequency of the laser, with a
Rabi frequency of Ω0 [5].

The Hamiltonian, under electric dipole and rotating
wave approximations, is given by

H ¼ �h
x1

X0

2
eiðxt�kz0þ/Þ

X0

2
e�iðxt�kz0þ/Þ x2

0
B@

1
CA; (1)

65
where k is the wavenumber of the laser, z0 is the position
of the atom, and ϕ is the phase of the field. Without loss of
generality, we set z0 = 0 and ϕ = 0 in what follows. The

70corresponding two-level state vector for each atom is
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wj i ¼ C1ðtÞ
C2ðtÞ
� �

; (2)

which obeys the Schrödinger equation

i�h
@ wj i
@t

¼ H wj i: (3)

To simplify the calculation, we convert the equations to
5 the rotating wave frame by carrying out the following

transformation into an interaction picture:

j ~wi � ~C1ðtÞ
~C2ðtÞ

� �
¼ R wj i; (4a)

where

R ¼ eix1t 0
0 eix2t

� �
: (4b)

10 The Schrödinger equation now can be written as

i�h
@j ~wi
@t

¼ ~Hj ~wi; (5a)

where

~H ¼ �h
0

X0

2
X0

2
�d

0
B@

1
CA; (5b)

d ¼ x� x2 � x1ð Þ: (5c)

15 The time-independent Hamiltonian shown in
Equation (5b) can also be derived easily without any
algebraic manipulation. To see how, consider the
diagram shown in Figure 1(b), where we have added the
number of photons as a quantum number in designating

20 the quantum states. Thus, for example, N ; 1j i represents
a joint quantum system where the number of photons in
the laser field is N, and the atom is in state 1, and so on.
Of course, a laser, being in a coherent state, is a linear

superposition of number states, with a mean photon
25number hNi, assumed to be much larger than unity. In

the presence of such a field, the interaction takes place
between near-degenerate states, namely N ; 2j i and
N þ 1; 1j i, for example, with a coupling rate of Ω0/2,
where QN / ffiffiffiffi

N
p

. Since the mean value of N is assumed
30to be very large, and much larger than its variance, one

can assume the mean value of ΩN, defined as Ω0 to be
proportional to

ffiffiffiffiffiffiffiffihNip
. Under this approximation, we see

that the coupling between any neighboring, near-degener-
ate pair of states is Ω0, and the energies of these states

35differ by δ. If we choose the energy of N þ 1; 1j i to be
0, arbitrarily, then the energy of N ; 2j i is –ћδ. The inter-
action is contained within a given manifold, so that a
difference in energy (by ћω) between neighboring mani-
fold is of no consequence in determining the evolution.

40These considerations directly lead to the Hamiltonian of
Equation (5b). For a system involving more than two
levels, a similar observation can be employed to write
down the time-independent Hamiltonian by inspection,
as we will show later.

45The decay of the excited state amplitude, at the rate
of �=2, can be taken into account by adding a complex
term to the Hamiltonian, as follows:

~H0 ¼ �h
0

X0

2
X0

2
� i�

2
� d

2
64

3
75; (6)

50For this modified Hamiltonian, the equation of
evolution for the interaction picture density operator can
be expressed as

@

@t
~� ¼ @

@t
~�ham þ @

@t
~�source þ @

@t
~�trans�decay � Q; (7)

where the second term in the middle accounts for the
55influx of atoms into a state due to decay from another

state, and the third term stands for any dephasing unac-
companied by population decay, often called transverse
decay. In the case of a two-level system, we have:

@

@t
~�ham ¼ � i

�h
~H0~�� ~� ~H0�� �

; (8a)

@

@t
~�source ¼ �~�22 0

0 0

� �
; (8b)

60
@

@t
~�trans�decay ¼ 0 �cd~�12

�cd~�21 0

� �
: (8c)

For simplicity, we ignore the dephasing term in Equation
65(8c).

Substituting Equation (6) into Equation (8a), we get:

Figure 1. Schematic diagram showing a two-level system. (a)
Two-level system with eigenvectors 1j i and 2j i; (b) considering
photon numbers, where N ; 1j i and N þ 1; 1j i have the same
energy, and the energy difference between N þ 1; 1j i and
N ; 2j i is �hd.
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In general, each of the matrix elements Qij can depend
on all the ρij. In order to find the steady-state solution, it
is convenient to construct the following vector

A ¼
~�11
~�12
~�21
~�22

2
664

3
775: (11)

5 Equation (10) can now be expressed as a matrix equation

@

@t
A ¼ MA; (12)

where M is a (4 × 4) matrix, represented formally as:

M ¼
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

2
664

3
775: (13)

10 Of course, the elements of this matrix can be read-off
from Equation (10). However, this task is quite cumber-
some for an N-level system. Thus, it is useful to seek a
general rule for finding this element without having to
write down Equation (10)_ explicitly. Later on in this

15 paper, we establish such a rule, and specify the algorithm
for implementing it. Here, we can illustrate this rule with
some explicit examples:

M11 ¼ Q11; if we set ~�11 ¼ 1 and ~�ijðij 6¼11Þ ¼ 0 in Equation ð7Þ;
M12 ¼ Q11; if we set ~�12 ¼ 1 and ~�ijðij 6¼12Þ ¼ 0 in Equation ð7Þ;
M13 ¼ Q11; if we set ~�21 ¼ 1 and ~�ijðij 6¼21Þ ¼ 0 in Equation ð7Þ;
M14 ¼ Q11; if we set ~�22 ¼ 1 and ~�ijðij 6¼22Þ ¼ 0 in Equation ð7Þ;
M21 ¼ Q12; if we set ~�11 ¼ 1 and ~�ijðij 6¼11Þ ¼ 0 in Equation ð7Þ;
M22 ¼ Q12; if we set ~�12 ¼ 1 and ~�ijðij 6¼12Þ ¼ 0 in Equation ð7Þ;
M23 ¼ Q12; if we set ~�21 ¼ 1 and ~�ijðij 6¼21Þ ¼ 0 in Equation ð7Þ;
M24 ¼ Q12; if we set ~�22 ¼ 1 and ~�ijðij 6¼22Þ ¼ 0 in Equation ð7Þ;
and so on . . .

(14)

This is the key element of the algorithm presented in
20 this paper. Explicitly, in a computer program, such as the

one in Appendix 1, every time a parameter is changed,
the elements of the M matrix are obtained by evaluating
Equation (7), while setting all but one of the elements of
the density matrix to zero. For numerical integration as a

25function of time, one can then use a Taylor expansion to
solve Equation (12).

To find the steady-state solution, we set @
@t A ¼ 0, so

that:

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

2
664

3
775

~�11
~�12
~�21
~�22

2
664

3
775 ¼ 0: (15)

30Expanding this equation, we get:

M11~�11 þM12~�12 þM13~�21 ¼ �M14~�22

M21~�11 þM22~�12 þM23~�21 ¼ �M24~�22

M31~�11 þM32~�12 þM33~�21 ¼ �M34~�22

M41~�11 þM42~�12 þM43~�21 ¼ �M44~�22

8>>><
>>>:

: (16)

For a closed system, there cannot be any net influx or
outflux of atoms from the system. Thus, the rate of
change of one of the diagonal (population) terms of the

35density matrix is the negative sum of the rates of change
of the other diagonal (population) terms. Thus, one of
the equations in the above system of equations is
rendered redundant. We also know that for a closed sys-
tem, sum of the diagonal elements of the density matrix

40equals unity. In the case of the two-level system, we thus
have ~�11 þ ~�22 ¼ 1. We can thus choose to eliminate the
last equation, for example, and replace ~�22 with
ð1� ~�11Þ in the remaining three equations, to get

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
4

3
5 ~�11

~�12
~�21

2
4

3
5 � M 0

~�11
~�12
~�21

2
4

3
5 ¼

M14

M24

M34

2
4

3
5~�11 � M14

M24

M34

2
4

3
5

(17a)

45so that

ðM11 �M14Þ M12 M13

ðM21 �M24Þ M22 M23

ðM31 �M34Þ M32 M33

2
4

3
5 ~�11

~�12
~�21

2
4

3
5 ¼ �

M14

M24

M34

2
4

3
5:
(17b)

Here, we have defined M′ as the reduced matrix resulting
from M after eliminating the last row and column, for
convenience of discussion during the presentation of the

50general algorithm later on. To simplify the notation
further, we define:

@

@t
~�ham ¼

1
2 iX0ð~�12 � ~�21Þ 1

2
iðði�� 2dÞ~�12 þ X0ð~�11 � ~�22ÞÞ

� 1

2
iðð�i�� 2dÞ~�21 þ X0ð~�11 � ~�22ÞÞ 1

2
ð�iX0ð~�12 � ~�21Þ � 2�~�22Þ

0
B@

1
CA: ð9Þ

Substituting Equations (8) and (9) into Equation (7), we get

@

@t
~� ¼ @

@t

~�11 ~�12

~�21 ~�22

� �
¼

1
2 iX0ð~�12 � ~�21Þþ�~�22

1
2 iðið�þ2idÞ~�12þX0ð~�11�~�22ÞÞ

� 1
2 iðð�i��2dÞ~�21þX0ð~�11�~�22ÞÞ 1

2 ð�iX0ð~�12�~�21Þ�2�~�22Þ

 !
¼ Q � Q11 Q12

Q21 Q22

� �
ð10Þ
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B �
~�11
~�12
~�21

2
4

3
5; S �

M14

M24

M34

2
4

3
5;W �

ðM11 �M14Þ M12 M13

ðM21 �M24Þ M22 M23

ðM31 �M34Þ M32 M33

2
4

3
5:

(18)
Using these definitions in Equation (17), we get:

WB ¼ �S:

5 Thus, the steady-state solution is simply given by:

B ¼ �W�1S: (19)

In a computer code, such as the one in Appendix 1,
10 the elements of W and S can be determined in an auto-

mated fashion by using a simple algorithm based on a
generalization of this example. We get the values of ~�11,
~�12, and ~�21 by using Equation (19). Using the condition
~�11 þ ~�22 ¼ 1, we can then find the value of ~�22.

15 For the two-level system, the elements of M, W, and
S can be worked out by hand, without employing the
general rules, with relative ease. However, for arbitrarily
large systems, it can become exceedingly cumbersome.
In what follows, we describe a compact algorithm for

20 determining the elements of M, W, and S for a system
with N energy levels.

To start with, determine the elements of the complex
effective Hamiltonian of Equation (6), as well as the ele-
ments of ~�source for the N-level system. These matrices

25 can be used to calculate the elements of Q, as defined in
Equations (7) and (10). The elements of M can then be
found by using the following algorithm. Let Mnp denote
the element corresponding to the n-th row and p-th
column of the M matrix. Similarly, let Qαβ denote the ele-

30 ment corresponding to the α-th row and β-th column of
the Q matrix, and ~�er denote the elements corresponding
to the ε-th row and α-th column of the ~� matrix. Then
one can use the following prescription to obtain Mnp:

Mnp ¼ Qab if we set ~�er ¼ 1 and ~�ijðij 6¼erÞ ¼ 0 in Equation ð7Þ:
35 Thus, the crux of the algorithm is to obtain a way of

finding α, β, α, and ε efficiently, for a given set of values
of {n,p}. These indices are obtained as follows:

b ¼ nzrem½n=N �; a ¼ 1þ ðn� bÞ=N ;

a ¼ nzrem½p=N �; e ¼ 1þ ðp� rÞ=N ;
(20)

40 where nzrem is a user-defined function prescribed as fol-
lows: nzrem[A/B] = remainder[A/B] if the remainder is
non-zero; otherwise nzrem[A/B] = B. As an example,
consider the case of the last line in Equation (14). Here,

45 n = 2, p = 4, and N = 2. Thus, applying Equation (20),
we get: β = 2, α = 1, α = 2, and ε = 2, in agreement
with the last line of Equation (14). We should note that
there are other ways to determine these coefficients as
well, using the greatest integer function, for example.

50 Once (α,β) and (ε,α) have been obtained, set ~�er to
be 1 while setting the other elements to 0, evaluate the
Q matrix using Equation (7), and then pick out Qαβ and

assign it to Mnp. Then repeat this procedure of evaluating
the Q matrix every time with different element of the ~�

55matrix set to 1 sequentially, until all elements of the M
matrix have been calculated.

The steps for finding S and W, as defined in Equation
(18) for the case of a two-level system, are rather simple.
The last column of the M matrix barring the very last

60element is the S matrix. In order to determine the ele-
ments of W, find first the M′ matrix, which is obtained
from M by eliminating the last row and the last column,
as illustrated in Equation (17a) for a two-level system.
Define Wi and M′i as the i-th column of the W and the

65M′ matrix. Then, update a selected set of Wi, using an
index k running from 1 to (N − 1), as follows:

Wðk�1ÞNþk ¼ M 0
ðk�1ÞNþk � S: (21)

To illustrate this rule, consider, for example, the case
where N = 3. In this case, W1 = M1 − S (for k = 1) and

70W5 = M5 − S (for k = 2), and the other six columns
remain the same. With S and W thus determined,
Equation (20) is used to find the steady-state solution
vector: B. A particular element of the density matrix, ~�jk
(excluding ~�NN ), corresponds to the ((j − 1)N + k)-th

75element of the B vector. The population in the N-th
level, ~�NN is simply obtained from the knowledge of the
steady- state populations in all other levels and the
constraint

PN
i¼1 ~�ii = 1. Explicitly, we can write:

~�NN ¼ 1�
XðN�1Þ

j¼1

Bððj� 1ÞN þ jÞ; (22)

80where we have used the notation that B(k) represents the
k-th element of the B vector.

A Matlab code for an N-level system, applied to the
case of two levels, is shown in Appendix 1. The code is

Mono
for

prin
t

colo
ur o

nlin
e

Figure 2. Population of excited state for a two-level system
calculated using this algorithm. See text for details. (The colour
version of this figure is included in the online version of the
journal.)
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5 valid for a general system; only N (number of levels in
the system), and the effective, complex Hamiltonian
(Equation (6)) and the source terms (Equation (8)) need
to be changed. The rest of the program does not have to
be changed. Of course, the plotting commands would

10 have to be defined by the user based on the information
being sought. As an example, the population of the
excited state as a function of the detuning, δ, produced
by this code, is plotted in Figure 2.

3. A three-level system

15 The two-level problem discussed above is somewhat
trivial, and may mask the generality of the algorithm.
Therefore, we include here the specific steps for a three-
level Λ system [6–11], shown in Figure 3, in order to
elucidate how the algorithm is completely scalable to an

20 arbitrary number of energy levels involved. In this case,
the Hamiltonian under electric dipole and rotating wave
approximations is given by

H ¼ �h

x1 0
Xa

2
eixat

0 x2
Xb

2
eixbt

Xa

2
eixat �b

2
eixbt x3

0
BBBBB@

1
CCCCCA; (23)

25 where �hx1, �hx2, and �hx3 are the energies of the three
levels, and xa and xb are the frequencies of the laser fields.

After applying the interaction picture transformation
using the following matrix

R ¼
eiht 0 0
0 eibt 0
0 0 ei�t

2
4

3
5; (24)

30Where h ¼ x1 � D
2 ; b ¼ x2þ D

2 ;D ¼ da � db; d ¼
ðda þ dbÞ=2; da ¼ xa � ðx3 � x1Þ; db ¼ xb � ðx3 � x2Þ,
the Hamiltonian can be expressed as

~H ¼ �h

2

D 0 Xa

0 �D Xb

Xa Xb �2d

0
@

1
A: (25)

The transformed state vector for each atom can be
35written as

j ~wi ¼ R wj i ¼
~C1ðtÞ
~C2ðtÞ
~C3ðtÞ

2
4

3
5: (26)

The time-independent Hamiltonian ~H of Equation (25)
can be written down by inspection, following the discus-
sion presented earlier for the two-level system. First, we

40observe that the energy difference between 1j i and 3j i
ð~H11 � ~H33) is h� da, and the energy difference between
2j i and 3j i (~H22 � ~H33) is h� db. Next, we make a judi-
cious but arbitrary choice that ð~H11 � h�

2D. We then get
that ~H33 ¼ �h�d which in turn implies that ð~H22 � h�

2D.
45The off-diagonal terms are, of course, obvious, with

non-zero elements for transitions excited by fields. This
approach is generic, and can be used to find the time
independent Hamiltonian by inspection for an arbitrary
number of levels. We should note that a complication

50exists when closed-loop excitations are present. In that
case, it is wiser to work out the Hamiltonian explicitly
using the transformation matrix approach outlined here.
We now add the decay term to get the complex
Hamiltonian

~H0 ¼ �h

2

D 0 Xa

0 �D Xb

Xa Xb �i��2d

0
@

1
A: (27)

55We assume that the population of the excited state
decays at the same rate (�=2) from 3j i to 1j i and from
3j i to 2j i. Now we construct the M matrix for the three-
level system which satisfies the following equation under

60the steady-state condition:

M11 M12 M13 M14 M15 M16 M17 M18 M19

M21 M22 M23 M24 M25 M26 M27 M28 M29

M31 M32 M33 M34 M35 M36 M37 M38 M39

M41 M42 M43 M44 M45 M46 M47 M48 M49

M51 M52 M53 M54 M55 M56 M57 M58 M59

M61 M62 M63 M64 M65 M66 M67 M68 M69

M71 M72 M73 M74 M75 M76 M77 M78 M79

M81 M82 M83 M84 M85 M86 M87 M88 M89

M91 M92 M93 M94 M95 M96 M97 M98 M99

2
6666666666664

3
7777777777775

~�11
~�12
~�13
~�21
~�22
~�23
~�31
~�32
~�33

2
6666666666664

3
7777777777775
¼ 0:

(28)

The elements of the M matrix can be found explicitly by
following the same steps as shown in Equations (7)
through (13) for the two-level system. Alternatively,

65these can be found by using the algorithmic approach
outlined in Equation (20), and implemented by a

Figure 3. Schematic illustration of a three-level system. See
text for details.
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computer code. The M-matrix can be obtained in O(N2)
steps as opposed O(N4) that would be needed using the
method prescribed thus far, but it is non-intuitive and

5 masks the understanding of the algorithm. We have out-
lined the faster method in the appendix.

Substituting ~�11þ~�22þ~�33¼ 1 into Equation (28), we
get

M11 M12 M13 M14 M15 M16 M17 M18

M21 M22 M23 M24 M25 M26 M27 M28

M31 M32 M33 M34 M35 M36 M37 M38

M41 M42 M43 M44 M45 M46 M47 M48

M51 M52 M53 M54 M55 M56 M57 M58

M61 M62 M63 M64 M65 M66 M67 M68

M71 M72 M73 M74 M75 M76 M77 M78

M81 M82 M83 M84 M85 M86 M87 M88

2
66666666664

3
77777777775

~�11
~�12
~�13
~�21
~�22
~�23
~�31
~�32

2
66666666664

3
77777777775
¼

M19

M29

M39

M49

M59

M69

M79

M89

2
66666666664

3
77777777775
~�11 þ

M19

M29

M39

M49

M59

M69

M79

M89

2
66666666664

3
77777777775
~�22 �

M19

M29

M39

M49

M59

M69

M79

M89

2
66666666664

3
77777777775

ð29aÞ

10 or

ðM11 �M19Þ M12 M13 M14 ðM15 �M19Þ M16 M17 M18

ðM21 �M29Þ M22 M23 M24 ðM25 �M29Þ M26 M27 M28

ðM31 �M39Þ M32 M33 M34 ðM35 �M39Þ M36 M37 M38

ðM41 �M49Þ M42 M43 M44 ðM45 �M49Þ M46 M47 M48

ðM51 �M59Þ M52 M53 M54 ðM55 �M59Þ M56 M57 M58

ðM61 �M69Þ M62 M63 M64 ðM65 �M69Þ M66 M67 M68

ðM71 �M79Þ M72 M73 M74 ðM75 �M79Þ M76 M77 M78

ðM81 �M89Þ M82 M83 M84 ðM85 �M89Þ M86 M87 M88

2
66666666664

3
77777777775

~�11
~�12
~�13
~�21
~�22
~�23
~�31
~�32

2
66666666664

3
77777777775
¼ �

M19

M29

M39

M49

M59

M69

M79

M89

2
66666666664

3
77777777775
: ð29bÞ

15 Substituting them into Equation (29b), we get

WB ¼ �S or B ¼ �W�1S: (30)

The Matlab program shown in Appendix 2 imple-
ments our algorithm for the three-level system. Note that

20 this program is essentially the same as the program for
the two-level case with the following modifications: we
have (a) defined additional parameters relevant to this
system, (b) entered proper elements in the Hamiltonian,
and (c) added appropriate source terms for the popula-

25 tions. As an example, we have shown in Figure 4 a plot
of the population of the excited state, produced using
this code, displaying the well-known coherent population
trapping dip.

4. Applying the code to a system with an arbitrary
30number of energy levels

There are many examples in atomic and molecular physics
where it is necessary to include a large number of energy
levels. One example is an atomic clock employing coher-
ent population trapping [12]. The basic process employs

35only three Zeeman sublevels. However, the other Zeeman
sublevels have to be taken into account in order to
describe the behavior of the clock accurately Using alkali
atoms for other applications such as atomic interferometry,
magnetometry, and Zeno-effect based switching also

40requires taking into account a large number of Zeeman
sublevels [13–16]. Another example is the cooling of mol-
ecules using lasers. In this case, many rotational and vibra-
tional levels have to be considered [17]. The code
presented here can be applied readily to these problems,

45with the following modifications: (a) define additional
parameters to characterize the problem; (b) develop the
time independent Hamiltonian (possibly by inspection
using the technique described earlier, if no closed-loop
excitation is present); (c) add proper decay terms to the

50Hamiltonian; (d) add appropriate source terms for the

To simplify the above expression, we define the following objects as before

B ¼

~�11
~�12
~�13
~�21
~�22
~�23
~�31
~�32

2
66666666664

3
77777777775

S ¼

M19

M29

M39

M49

M59

M69

M79

M89

2
66666666664

3
77777777775
W ¼

ðM11 �M19Þ M12 M13 M14 ðM15 �M19Þ M16 M17 M18

ðM21 �M29Þ M22 M23 M24 ðM25 �M29Þ M26 M27 M28

ðM31 �M39Þ M32 M33 M34 ðM35 �M39Þ M36 M37 M38

ðM41 �M49Þ M42 M43 M44 ðM45 �M49Þ M46 M47 M48

ðM51 �M59Þ M52 M53 M54 ðM55 �M59Þ M56 M57 M58

ðM61 �M69Þ M62 M63 M64 ðM65 �M69Þ M66 M67 M68

ðM71 �M79Þ M72 M73 M74 ðM75 �M79Þ M76 M77 M78

ðM81 �M89Þ M82 M83 M84 ðM85 �M89Þ M86 M87 M88

2
66666666664

3
77777777775
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populations & transverse decay terms; and (e) add plotting
instructions for components of interest from the solution
vector. Of course, if numerical techniques are to be
employed for finding time-dependent solutions, the code

5 can be truncated after the M matrix is determined, fol-
lowed by application of Equation (12) along with a proper
choice of initial conditions.

5. Applying the code to a specific system with 15
energy levels: an optically controlled waveplate

10 As an explicit example of a system involving a non-trivial
number of energy levels and optical transitions, we

consider here a process where a ladder transition in 87Rb
is used to affect the polarization of a probe beam (upper
leg) by varying parameters for the control beam (lower

15leg). The excitation process is illustrated schematically in
Figure 5, for one particular configuration where the con-
trol beam is right circularly polarized, and the probe is lin-
early polarized. Because of the asymmetry introduced by
the control, it is expected that the left circular component

20of the probe would experience a much larger phase shift,
which in turn would induce an effective rotation of the
probe polarization. Thus, the system can be viewed as an
optically controlled waveplate for the probe. Here, we use
the generalized algorithm to compute the response of this

25system. Of course, the response of the system under vari-
ous experimental conditions would be quite different. The
interactions of the pump (~795 nm) and the probe (~1323
nm) are modeled as follows. The pump is either left or
right circularly polarized, and is tuned between the 5S1/2,

30F = 1 to 5P1/2, F′ = 1 and the 5S1/2, F = 1 to 5P1/2, F′ = 2
transitions, with a detuning of δp, as illustrated in Figure 5.
The probe, linearly polarized, is tuned to the 5P1/2, F′ = 1
to 6S1/2, F′′ = 1 transition, with a detuning of δs. Due to
Doppler broadening, it is important to consider the inter-

35action of the 5P1/2, F′ = 2 level with both the pump and
probe optical fields. For example, δp = 814.5 MHz corre-
sponds to the situation where the pump is resonant with
the 5S1/2, F = 1 to 5P1/2, F′ = 2 transition and δs = −814.5
MHz corresponds to the situation where the probe is reso-

40nant with the 5P1/2, F′ = 2 to 6S1/2, F′′ = 1 transition. In
our model, we ignore the coherent coupling between
5S1/2, F = 2 and the 5P1/2 manifold, because of the large
frequency difference between 5S1/2, F = 1 and 5S1/2,
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Figure 5. Fifteen-level system for polarization rotation in 87Rb. nj i: Eigenstate of the system (n = 1,2,…15); m: Zeeman sublevels
(m = −2, −1, 0, 1, 2). The decay rates of 6S1/2 and 5P1/2 levels are Γa and Γb, respectively. Γg: ground state dephasing rate. Rabi
frequencies on the various legs are proportional to dipole strength matrix elements. (The colour version of this figure is included in
the online version of the journal.)
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Figure 4. Population of the excited state for a three-level
system calculated using this algorithm. See text for details.
(The colour version of this figure is included in the online
version of the journal.)

Journal of Modern Optics 7

TMOP 865806 QA: KS
2 December 2013 Initial



F = 2 (~6.8 GHz for 87Rb). However, we take into
5 account the decay of atoms from the 5P1/2 manifold to the

5S1/2, F = 2 state. Furthermore, we account for collisional
relaxation (at a rate Γg) between 5S1/2, F = 1 and 5S1/2,
F = 2 manifolds, in order to model the behavior of atoms
in a vapor cell. Finally, we also take into account the

10 decay of atoms from 6S1/2, F′′ = 1 to the 5S1/2 manifold
via the 5P3/2 manifold in an approximate manner.

The Rabi frequency of each transition is proportional
to the corresponding dipole moment matrix elements. In
Figure 5, all the Rabi frequencies are expressed as a

15 multiple of the Rabi frequency corresponding to the
weakest transition [18]. For example, the dipole matrix
elements of σ+ transitions for the 5S1/2–5P1/2 excitation
are tabulated in Table 1. Thus, if we set the coupling
between 1j i and 5j i to be ~H1;5 ¼ � �pþ

2 , then the other
20 coupling terms for the lower leg are as follows:

~H1;9 ¼ �Xpþ
2

; ~H2;6 ¼ �Xpþ
2

; ~H2;10 ¼ �
ffiffiffi
3

p
Xpþ
2

;

~H3;11 ¼ �
ffiffiffi
6

p
Xpþ
2

:

The decay rates between any two Zeeman sub-levels
are assumed to be proportional to the squares of the

25 dipole moment matrix elements such that the sum of all
the decay rates equals the net decay rate from that level.
We assume all the Zeeman sub-levels in the 5P1/2 and
6S1/2 manifold decay at the same rate, Γa and Γb, respec-
tively. To illustrate how the decay terms are determined,

30 consider, for example, state 5j i, which denotes the Zee-
man sublevel 5P1/2, F′ = 1, mF = 0. The dipole matrix
elements for all allowed transitions from this state to the
various sublevels within the 5S1/2 manifold are shown in
Figure 6. With the decay rate from 5j i to the 5S1/2 mani-

35 fold being Γa, the decay rate from 5j i to 1j i (or 2j i) is
Γa /12. The decay from 5j i to 15j i (5S1/2, F = 2) is cal-
culated by adding the squares of the matrix elements for

all transitions between 5j i and the Zeeman levels of
15j i, and this turns out to be 5Γa/6.

40We have also taken into account the sourcing of
atoms into the ground states from the 6S1/2 state via the
5P3/2 state. These additional source terms are modeled
using an ‘effective decay rate’ (Γbi) directly from the
Zeeman sub-levels in the 6S1/2, F′′ = 1 level to the 5S1/2

45manifold. It is then assumed that all the Zeeman
sub-levels at the 6S1/2, F′′ = 1 level decays equally to
the Zeeman sub-levels of F = 1 and F = 2 levels at this
rate. In Figure 7, the branching ratios between the vari-
ous hyperfine levels and the effective decay rates from

50the 6S1/2, F′′ = 1 level to the 5S1/2 manifold are shown.
For our initial computations, we used a rough estimate
for Γbi. A more detailed calculation, taking into account
the various branching ratios into and from all the hyper-
fine levels of the 5P3/2 state can be used to determine

55Γbi. However, we found that the results did not change
significantly when Γbi was changed slightly and hence
using an approximate value is justified.

The goal of the simulation of the process illustrated
in Figure 5 is to determine how the state of a linearly

60polarized probe beam (at 1323 nm) is affected by its
passage through a vapor cell of length L and density n,
in the presence of a circularly polarized pump beam (at
795 nm). Thus, before presenting the details of the
atom–laser interaction, we specify the terminology rele-

65vant for characterizing the probe beam, using the Jones
vector formulation. We consider the direction of propa-
gation as the z-axis, and the input probe to be linearly
polarized in the x direction. Thus, the input probe can be
described as:
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Figure 6. Dipole matrix elements for all allowed transitions
from the 5P1/2, F′ = 1, mF = 0 sublevel to the various sublevels
in the 5S1/2 manifold. (The colour version of this figure is
included in the online version of the journal.)
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Figure 7. Branching ratios between the hyperfine levels and
the effective decay rates from the F′′ = 1 level to the 5S1/2
manifold. See text for details. (The colour version of this figure
is included in the online version of the journal.)
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J
*

probe;input ¼ 1
0

� �
¼ 1

2
1
i

� �
þ 1

2
1
�i

� �
: (31)

5 The second part of Equation (31) indicates that the
linear polarization has been decomposed into a right cir-
cular polarization and a left circular polarization. The
effect of propagation through the cell can now be mod-

10 eled by expressing the output Jones vector as follows:

J
*

probe;output ¼ 1

2
1
i

� �
e�aþþjUþ þ 1

2
1
�i

� �
e�a�þjU� ; (32)

where aþ (a�) and Uþ (U�) are the attenuation and
phase shift experienced by the right (left) circular
component, respectively.

15 In order to make the system behave as an ideal half
waveplate, for example, the phase difference between the
right and left polarization components (j;þ � ;�j) should
be equal to π, and the attenuation for each component
should equal zero (aþ ¼ a� ¼ 0). In that case, the output

20 expression can be simplified as:

J
*

probe;output ¼ 1

2

1

i

� �
ej;þ þ 1

2

1

�i

� �
ej;� ¼ 1

2
ej;�

� 1

i

� �
ejp þ 1

�i

� �� �
¼ ejð;��

p
2Þ 0

1

� �
;

(33)

which is polarized linearly in the y-direction. In practice,
the attenuation coefficients are non-vanishing. However, if

25 they are equal to each other (i.e. aþ ¼ a�), then they sim-
ply reduce the amplitude of the signal, without affecting
the sense of polarization. Of course, the phase difference
(Uþ ¼ U�) can have a wide range of values, correspond-
ing to different output polarization states. In what follows,

30 we solve the density matrix equation of motion for the
15-level system shown in Figure 5, in order to determine
the four quantities of interest: Uþ, U�, aþ, a�.

The time-independent Hamiltonian after moving to a
rotating basis and the RWA can be written down using

35 the method we described in Sections 2 and 3. Given the
large number of levels, we use below a compact nota-
tion, rather than a matrix, to express the Hamiltonian.
Specifically, ~H is given by (setting �h = 1):

~H1;1 ¼ �i
g

2
; ~H1;5 ¼ �XP

2
; ~H1;9 ¼ �XP

2
;

~H2;2 ¼ �i
g

2
; ~H2;6 ¼ �XP

2
; ~H2;10 ¼ �

ffiffiffi
3

p
XP

2
;

40

~H3;3 ¼ �i
g

2
; ~H3;11 ¼ �

ffiffiffi
6

p
XP

2
;

~H4;4 ¼ �dP � i
a

2
; ~H4;13 ¼ �Xs

2
;

~H5;1 ¼ ~H�
1;5;

~H5;5 ¼ �dP � i
a

2
; ~H5;12 ¼ Xs

2
; ~H5;14 ¼ �Xs

2
;

45

~H6;2 ¼ ~H�
2;6;

~H6;6 ¼ �dP � i
a

2
; ~H6;13 ¼ Xs

2
;

~H7;7 ¼ D� dP � i
a

2
; ~H7;12 ¼

ffiffiffi
6

p
Xs

2
;

~H8;8 ¼ D� dP � i
a

2
; ~H8;13 ¼

ffiffiffi
3

p
Xs

2
;

~H9;1 ¼ ~H�
1;9;

~H9;9 ¼ D� dP � i
a

2
; ~H9;12 ¼ Xs

2
; ~H9;14 ¼ Xs

2
;

50
~H10;2 ¼ ~H�

2;10;
~H10;10 ¼ D� dP � i

a

2
; ~H10;13 ¼

ffiffiffi
3

p
Xs

2
;

~H11;3 ¼ ~H�
3;11;

~H11;11 ¼ D� dP � i
a

2
; ~H11;14 ¼

ffiffiffi
6

p
Xs

2
;

~H12;5 ¼ ~H5;12
a
st; ~H12;7 ¼ ~H�

7;12;
~H12;9 ¼ ~H�

9;12;

~H12;12 ¼ �dS � dP � i
b

2
;

55~H13;4 ¼ ~H�
4;13;

~H13;6 ¼ ~H�
6;13;

~H13;8 ¼ ~H�
8;13;

~H13;10 ¼ ~H�
10;13;

~H13;13 ¼ �dS � dP � i
b

2
;

~H14;5 ¼ ~H�
5;14;

~H14;9 ¼ ~H�
9;14;

~H14;11 ¼ ~H�
11;14;

~H14;14 ¼ �dS � dP � i
b

2
;

~H15;15 ¼ �i
g

2
:

60All the other terms of ~H are equal to zero. We then add
the population source terms to the Hamiltonian. We
assume the decay rates from F′′ = 1 to 5P1/2 (�bd) are
equal to the effective decay rate from F′′ = 1 to 5S1/2

65(�bi). Thus, �bd ¼ a�b;�bi ¼ ð1� aÞ�b where a ¼ 0:5,

d�11
dt

¼ ð�44 þ �55 þ �99Þ
a

12
þ �77

a

2
þ �88

a

4

þ ð�12;12 þ �13;13 þ �14;14Þ
bi

18
þ �15;15

g

3
;

d�22
dt

¼ ð�44 þ �66Þ
a

12
þ �88

a

4
þ �99

a

3
þ �10;10

a

4

þ ð�12;12 þ �13;13 þ �14;14Þ
bi

18
þ �15;15

g

3
;

d�33
dt

¼ ð�55 þ �66 þ �99Þ
a

12
þ �10;10

a

4
þ �11;11

a

2

þ ð�12;12 þ �13;13 þ �14;14Þ
bi

18
þ �15;15

g

3
;
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d�44
dt

¼ �12;12
bd

12
þ �13;13

bd

12
;

d�55
dt

¼ �12;12
bd

12
þ �14;14

bd

12
;

d�66
dt

¼ �13;13
bd

12
þ �14;14

bd

12
;

5
d�77
dt

¼ �12;12
bd

2
;

d�88
dt

¼ �12;12
bd

4
þ �13;13

bd

4
;

10
d�99
dt

¼ �12;12
bd

12
þ �13;13

bd

3
þ �14;14

bd

12
;

d�10;10
dt

¼ �13;13
bd

4
þ �14;14

bd

4
;

d�11;11
dt

¼ �14;14
bd

2
;

d�15;15
dt

¼ ð�1;1 þ �2;2 þ �3;3Þgg þ ð�44 þ �55 þ �66Þ
5a
6

þ ð�77 þ �88 þ �99 þ �10;10 þ �11;11Þ
a

2

þ ð�12;12 þ �13;13 þ �14;14Þ
5bi
6
:

15The attenuation and the additional phase shift introduced
by the Rb medium (as compared to free space
propagation) of the signal beam can be expressed as:

phase:

/þ ¼ kL
bþ
2
Reða13;4�13;4 þ a14;5�14;5 þ a12;7�12;7

þ a13;8�13;8 þ a14;9�14;9Þ;

/� ¼ kL
b�
2
Reða12;5�12;5 þ a13;6�13;6 þ a12;9�12;9

þ a13;10�13;10 þ a14;11�14;11Þ:
20attenuation:

aþ ¼ e�kLbþImða13;4�13;4þa14;5�14;5þa12;7�12;7þa13;8�13;8þa14;9�14;9Þ=2;

a� ¼ e�kLb�Imða12;5�12;5þa13;6�13;6þa12;9�12;9þa13;10�13;10þa14;11�14;11Þ=2:

Table 1. 87Rb D1 (5S1/2 – 5P1/2) dipole matrix elements for
rþtransition (F = 1, mF ! F 0, m0

F ¼ mF þ 1).

mF ¼ �1 mF ¼ 0 mF ¼ 1

F 0 ¼ 2 �
ffiffiffiffiffi
1

12

r
�

ffiffiffi
1

4

r
�

ffiffiffi
1

2

r

F 0 ¼ 1 �
ffiffiffiffiffi
1

12

r
�

ffiffiffiffiffi
1

12

r
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Figure 8. Simulation result of an optically controlled waveplate using 15 levels in 87Rb. See text for details. (The colour version of
this figure is included in the online version of the journal.)
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and

b� ¼ b2min
3natom�k

3

4p2Xmin
;

5 where k is the wavevector of the signal beam, which is
at 1323 nm, L is the length of the cell, which is set to
be 15 cm, natom is the density of Rb atoms, which is set
to be 1016=m3;�min is the Rabi frequency for the weak-

10 est probe transition (for example, the 14j i– 9j i transition
in our model) and the various aij’s are the ratios of the
Rabi frequency (�ij) of the ij i � jj i transition to �min.
For example, a12;7 ¼ �12;7=�14;9 ¼

ffiffiffi
6

p
. b2min is the frac-

tion of the atoms (<1) that decay along the transition
15 corresponding to �min, among all allowed decay chan-

nels from the decaying level. In our model, the ampli-
tudes for all possible transitions from 14j i are in the
ratio 1:1:1:

ffiffiffi
3

p
:
ffiffiffi
6

p
and hence the fraction of atoms that

decay along the different channels are in the ratio
20 1:1:1:3:6. Thus, b2min ¼ 1=ð1þ 1þ 1þ 3þ 6Þ ¼ 1=12.

Setting the pump frequency at a certain value
(dp ¼ D; which corresponds to the situation when the
pump is resonant with the F = 1 to F′ = 2 transition)
and scanning the probe detuning (ds), we can plot the

25 various quantities of interest (Uþ, U�,aþ, a�) as a func-
tion of ds, as shown in Figure 8. The relevant parameters
used for this particular simulation are as follows. The
decay rates Γa, Γb and Γg are 2π × 5.75 s−1, 2π × 3.45
s−1, and 2π × 0.1 s−1, respectively. We perform our cal-

30 culations by setting Γa to unity and rescaling all parame-
ters in units of Γa. The separation Δ, between F′ = 1 and
F′ = 2 is 2π × 814.5 s−1 (¼ 141:4�aÞ and the probe de-
tuning (δs) ranges from −200�a to 200�a. The Rabi fre-
quencies have been chosen to be Xp ¼ 5�a, and

35 Xs ¼ 0:1�a. Figures 8(a) and 8(b) show the additional
phase shifts produced by the Rb medium for the right
and left circular polarization parts of the signal beam and
Figure 8(c) shows the difference between them. Figures
8(d)–8(f) show the corresponding figures for attenuation.

40 For example, at δs = 200, we have a differential attenua-
tion of ~0 and a differential phase shift of about 30°.
Since the main purpose of this paper is to illustrate the
application of the algorithm for obtaining the solution to
the density matrix equations for a large quantum system,

45 we refrain from exploring the parameter space in detail.
Actual experimental results and conditions necessary to
produce a differential phase shift of π with virtually no
differential attenuation (and thus allowing us to use the
optically controlled waveplate for all-optical switching)

50 are presented in a separate paper [19].

5. Conclusion

We have presented a novel algorithm for efficiently find-
ing the solution to the density matrix equations for an
atomic system with arbitrary number of energy levels. For

55 this purpose, the Liouville equation that describes the time

evolution of the density matrix is formulated as a matrix-
vector equation. We presented an algorithm that allows us
to find the elements of the evolution matrix with ease for
systems with arbitrarily large value of N. As examples,

60we then used the algorithm to find steady-state solutions
for atomic systems consisting of two- and three- levels.
We also described a comprehensive model (consisting of
15 levels) for an optically controlled waveplate using
the 5S1/2–5P1/2–6S1/2 cascade system. Finally, we used

65the algorithm to obtain the steady state solution for the
15-level system. The algorithm and the Matlab codes
presented here should prove very useful for the atomic
and molecular physics community.
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Appendix 1: Matlab program for solving the two-level problem
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Appendix 2: Matlab program for solving the three-level problem
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Appendix 3: Algorithm optimization
The crux of the algorithm is to obtain the M matrix in an auto-
mated fashion. The most obvious, but rather elaborate (O (N4)
operations) way to perform this task has been illustrated previ-
ously. However, several simplifications can be made to the
algorithm so that the entire process can be accomplished using
O (N2) operations and also avoid some other redundant opera-
tions, thereby increasing the speed by a factor of ~N2. To do
this, we first observe that instead of evaluating the M matrix
row-wise as was shown before, it is more beneficial to evaluate
it column wise. Each column in the M matrix is simply
obtained by successively setting each of the density matrix ele-
ments to 1, while setting all others to 0. Thus, the entire first
column can be obtained be setting ρ11=1 and all other ρij = 0,
second column with ρ12 = 0 and all other ρij = 0 and so on. In
general, by setting ρεσ = 1 and all other density matrix ele-
ments to 0, we obtain the ((ε − 1)N + σ)th column of the M
matrix where each of ε and σ vary from 1 to N.

Furthermore, it is to be noted that the computation Hρ–ρH+

involve multiplication of extremely sparse matrices, since only
one of the elements of the ρ matrix is 1 each time. It is evident
that each column of the M matrix will simply be made up of cer-
tain columns of the Hamiltonian. Thus, the task is reduced to (a)
figuring out the pattern of columns that are picked out from the
Hamiltonian and (b) identify the locations in the M-matrix,
where they would be filled. To illustrate this clearly, it is conve-
nient to treat the calculation of the M-matrix as arising from two
separate computations: Hρ and ρH+. Let us consider a specific

case when ρεσ = 1. The ρH+ computations would pick the σth
column of the Hamiltonian (with its elements conjugated) to be
placed between rows (ε − 1)N + 1 and εN of the ((ε − 1)N + σ)th
column of the M matrix. The Hρ computations, on other hand,
would pick the elements of the εth column of the Hamiltonian
(with the elements picking up an extra negative sign) and popu-
late the following rows of the ((ε − 1)N + σ)th column of the M
matrix: σth row, (σ + N)th row, (σ + 2N)th row and so on until
the (σ + N(N − 1))th row. When, this process is repeated for each
element of the density matrix, the M-matrix, barring the sourse
terms would have been computed.

Finally, the addition of the source terms can also be simpli-
fied by choosing to modify the M-matrix only when one of the
diagonal elements of the density matrix is set to 1, i.e ρεε = 1,
where ε = 1 to N. Furthermore, instead of adding the source
terms in-line, as was done previously, we can simply pre-define
a ‘source matrix’ and simply pick off the elements of this
matrix that would then be added to the appropriate entries in
the M-matrix. For example, one way of defining such a ‘source
matrix’ would be to have the coefficients of the ρεε in all the
source equations (from d�11=dt to d�NN=dt) along the εth col-
umn of the source matrix. Now, all that needs to be done is to
simply add the εth column of the source matrix to the ((ε − 1)
N + ε)th column of the previously computed M matrix when-
ever ρεε = 1. As an illustration of these optimization steps, we
reproduce below a modified version of the code for a three-
level system, which should be contrasted with the un-optimized
code for the same system presented in Appendix 2.
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