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The Liouville equation governing the evolution of the density matrix for an atomic/molecular system is expressed in
terms of a commutator between the density matrix and the Hamiltonian, along with terms that account for decay and
redistribution. To find solutions of this equation, it is convenient first to reformulate the Liouville equation by defining a
vector corresponding to the elements of the density operator, and determining the corresponding time-evolution matrix.
For a system of N energy levels, the size of the evolution matrix is N*xN*. When N is very large, evaluating the
elements of these matrices becomes very cumbersome. We describe a novel algorithm that can produce the evolution
matrix in an automated fashion for an arbitrary value of N. As a non-trivial example, we apply this algorithm to a

15-level atomic system used for producing optically controlled

polarization rotation. We also point out how such a code

can be extended for use in an atomic system with arbitrary number of energy levels.

Keywords: optically controlled birefringence; multi-level coherent process; novel computational algorithm

1. Introduction

For some situations in atomic and molecular physics, it is
necessary to consider a system with many energy levels,
such as excitation involving many hyperfine levels and/or
Zeeman sublevels. The Liouville equation that describes
the evolution of the density matrix is expressed in terms
of a commutator between the density matrix and the
Hamiltonian, as well as additional terms that account for
decay and redistribution [1-4]. To find solutions to this
equation in steady state or as a function of time, it is con-
venient first to reformulate the Liouville equation by
defining a vector corresponding to the elements of the
density operator, and determining the corresponding time
evolution matrix. To find the steady-state solution in a
closed system, it is also necessary to eliminate one of the
diagonal elements of the density matrix from these equa-
tions, because of redundancy. For a system of N atoms,
the size of the evolution matrix is N? XNZ, and the size of
the reduced matrix is (N*—1) x (N*—1). When N is very
large, evaluating the elements of these matrices becomes
very cumbersome. In this paper, we describe an algorithm
that can produce the evolution matrix in an automated
fashion, for an arbitrary value of N. We then apply this
algorithm to a 15-level atomic system used for producing
optically controlled polarization rotation.

The paper is organized as follows. In Section 2, we
introduce the algorithm, using a two-level system as an
example. In Section 3, we verify the algorithm with a
common three-level Raman system, and also show how

to generate a time-independent Hamiltonian for any
system by inspection alone. In Section 4, we show how
to generalize this to a system with arbitrary number of
levels. In Section 5, we use this algorithm to solve a
15-level atomic system used for producing optically
controlled polarization rotation. In appendices, we
include explicit Matlab codes for two-, three-, and
15-level systems and also a non-intuitive, but faster
computational method for our algorithm.

2. A two-level system

To illustrate the basic idea behind the algorithm, we first
consider the simplest case: a two-level system of atoms
excited by a monochromatic field [3], as illustrated in
Figure 1. Here, A, and hw, are the energies of levels
[1) and |2), and w is the frequency of the laser, with a
Rabi frequency of Q, [5].

The Hamiltonian, under electric dipole and rotating
wave approximations, is given by

Q |
| 7el(o)t7klo+(b)

H="h 2 G
%efi(wtszoﬂb) »y M

where k is the wavenumber of the laser, z, is the position
of the atom, and ¢ is the phase of the field. Without loss of
generality, we set zp = 0 and ¢ = 0 in what follows. The
corresponding two-level state vector for each atom is
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Figure 1. Schematic diagram showing a two-level system. (a)
Two-level system with eigenvectors |1) and |2); (b) considering
photon numbers, where |N,1) and |[N + 1,1) have the same
energy, and the energy difference between [N +1,1) and

IN,2) is hd.
_ G0
W) = [Q(t)], @)
which obeys the Schrédinger equation
L Ol
i o H|p). 3)

To simplify the calculation, we convert the equations to
the rotating wave frame by carrying out the following
transformation into an interaction picture:

LG (1)}
== = R|Y), 4a
=80 =rw )
where
eiwlt 0
R:[ 0 eiwzt]. (4b)
The Schrodinger equation now can be written as
M) _ 7
7i = 5
o= D), (50
where
Q
i 0o =
H=h|g 2| (5b)
al )
2
0=w— (w; — o). (5¢)
The time-independent Hamiltonian shown in

Equation (5b) can also be derived easily without any
algebraic manipulation. To see how, consider the
diagram shown in Figure 1(b), where we have added the
number of photons as a quantum number in designating
the quantum states. Thus, for example, |N, 1) represents
a joint quantum system where the number of photons in
the laser field is &V, and the atom is in state 1, and so on.
Of course, a laser, being in a coherent state, is a linear

superposition of number states, with a mean photon
number (N), assumed to be much larger than unity. In
the presence of such a field, the interaction takes place
between near-degenerate states, namely |N,2) and
[N 4+ 1,1), for example, with a coupling rate of Qy/2,
where Qg o< V/N. Since the mean value of N is assumed
to be very large, and much larger than its variance, one
can assume the mean value of Qy, defined as Q4 to be
proportional to y/(N). Under this approximation, we see
that the coupling between any neighboring, near-degener-
ate pair of states is Q, and the energies of these states
differ by 8. If we choose the energy of |[N +1,1) to be
0, arbitrarily, then the energy of |N,2) is —%d. The inter-
action is contained within a given manifold, so that a
difference in energy (by %w) between neighboring mani-
fold is of no consequence in determining the evolution.
These considerations directly lead to the Hamiltonian of
Equation (5b). For a system involving more than two
levels, a similar observation can be employed to write
down the time-independent Hamiltonian by inspection,
as we will show later.

The decay of the excited state amplitude, at the rate
of I'/2, can be taken into account by adding a complex
term to the Hamiltonian, as follows:

’H:h%_g_é, 6)
2 2

For this modified Hamiltonian, the equation of
evolution for the interaction picture density operator can
be expressed as

0 0 0

EP = &faham + ot ﬁsource + E/N)trans—decay = Q7

0

where the second term in the middle accounts for the
influx of atoms into a state due to decay from another
state, and the third term stands for any dephasing unac-
companied by population decay, often called transverse
decay. In the case of a two-level system, we have:

0

Y~ _ _i VU Y
ot Pham = i [ p P'H ]a (83)
0 . I'pp O
&psource = [ 822 0:| ; (8b)
0 0 —VaP12
A, Ptrans—decay = ~ . 8

For simplicity, we ignore the dephasing term in Equation

(8c).
Substituting Equation (6) into Equation (8a), we get:
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o _ 1iQ0 (P12 — p21) El((lr —20)p12 + Qo(p11 — p22))
g =1 . - 1 o N 9)
—Ei((—iF —26)pa1 + Qo(p11 — p22)) 7 (=iQo(p12 — p21) — 2I'pa2)
Substituting Equations (8) and (9) into Equation (7), we get
Qﬁ—g (/311 ﬁlz> B 31Q0(p12 — p21)+Tpm i(i(C+2i0)pr2+Qo(pr1—p2)) | _ <Qn Q12> (10)
ot 0t\pa P —3((—=10=28)p21+Q (pr11—p22)) 3 (=iQ0(p12—p21)—2Tp22) - \Ou On

In general, each of the matrix elements Q;; can depend
on all the p;;. In order to find the steady-state solution, it
is convenient to construct the following vector

P11
P12
A=|""]. 11
P21 (b
p22
Equation (10) can now be expressed as a matrix equation
0

—A=MA 12
oA = M, (12)

where M is a (4 x 4) matrix, represented formally as:

My My My My

My, My My My (13)
M3y Mz, My Mg |

My My Miz My

Of course, the elements of this matrix can be read-off
from Equation (10). However, this task is quite cumber-
some for an N-level system. Thus, it is useful to seek a
general rule for finding this element without having to
write down Equation (10)- explicitly. Later on in this
paper, we establish such a rule, and specify the algorithm
for implementing it. Here, we can illustrate this rule with
some explicit examples:

My = O, if we setpy = land pj;411) = 0in Equation (7);
My = O, if we set p1a = 1and pyj212) = 0in Equation (7);

)
)
M3 = Qu1, if we set gy = 1and pj21) = 0in Equation (7);
7);
My = Qua, if we set 1) = 1and ;211 = 0in Equation (7);
My = Q1y, if we set 1 = 1and py;£12) = 0in Equation (7);
).
)

My = QOra, if we set py1 = 1and pjj221) = 0in Equation (7

s

(
(
(
My = Qn, if we set ooy = 1and py(j422) = 0in Equation (
(
(
(
(

May = Qra, if we set pyy = 1and pyj(j222) = 0in Equation (7

and so on ...
(14)
This is the key element of the algorithm presented in
this paper. Explicitly, in a computer program, such as the
one in Appendix 1, every time a parameter is changed,
the elements of the M matrix are obtained by evaluating

Equation (7), while setting all but one of the elements of
the density matrix to zero. For numerical integration as a

function of time, one can then use a Taylor expansion to
solve Equation (12).

To find the steady-state solution, we set %A =0, so
that:

My My My My | | pu
My My My My | | pr2
Mz My Msz Mg | | P2
My My Mgz My | | p22

=0. (15

Expanding this equation, we get:

Mipi + Miapia + Mizpar = —Miap
Mo1pi1 + Mypio + Myszpyy = —Moapn
Ms1pi + Msapra + My poy = —Maapr
Myipr1 + My pro + Mazpo1 = —Maspao

(16)

For a closed system, there cannot be any net influx or
outflux of atoms from the system. Thus, the rate of
change of one of the diagonal (population) terms of the
density matrix is the negative sum of the rates of change
of the other diagonal (population) terms. Thus, one of
the equations in the above system of equations is
rendered redundant. We also know that for a closed sys-
tem, sum of the diagonal elements of the density matrix
equals unity. In the case of the two-level system, we thus
have pi; + p22 = 1. We can thus choose to eliminate the
last equation, for example, and replace p;; with
(1 — p11) in the remaining three equations, to get

My My M| | pu 23 My, My
My My My | |po|=M|po| =|Mua|pn— | Ma
Mz Mz Mz | | pa /1 Mz, Mi,

W N

(17a)
so that
(M —Myg) My, M| | pn My
(Myy —Mos) My My | |prn| =—| My
(M31 — Msg) Mz, Mz | | po My
(17b)

Here, we have defined M’ as the reduced matrix resulting
from M after eliminating the last row and column, for
convenience of discussion during the presentation of the
general algorithm later on. To simplify the notation
further, we define:
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P11 My (M1 — M) My Mg
B=|pi|,S= | My |, W= | (Mg —Mya) My My|.
p (M1 —Mzg) Mz Mss

(18)
Using these definitions in Equation (17), we get:

WB = —S.
Thus, the steady-state solution is simply given by:
B=-w"'s. (19)

In a computer code, such as the one in Appendix 1,
the elements of W and S can be determined in an auto-
mated fashion by using a simple algorithm based on a
generalization of this example. We get the values of pyy,
P12, and py1 by using Equation (19). Using the condition
P11 + P = 1, we can then find the value of po,.

For the two-level system, the elements of M, W, and
S can be worked out by hand, without employing the
general rules, with relative ease. However, for arbitrarily
large systems, it can become exceedingly cumbersome.
In what follows, we describe a compact algorithm for
determining the elements of M, W, and S for a system
with N energy levels.

To start with, determine the elements of the complex
effective Hamiltonian of Equation (6), as well as the ele-
ments of pguce for the N-level system. These matrices
can be used to calculate the elements of Q, as defined in
Equations (7) and (10). The elements of M can then be
found by using the following algorithm. Let A, denote
the element corresponding to the n-th row and p-th
column of the M matrix. Similarly, let O,p denote the ele-
ment corresponding to the o-th row and B-th column of
the O matrix, and p,, denote the elements corresponding
to the e-th row and a-th column of the p matrix. Then
one can use the following prescription to obtain M,,,,:

My, = Q.p if we set s = 1 and () = 01in Equation (7).

Thus, the crux of the algorithm is to obtain a way of
finding a, B, o, and ¢ efficiently, for a given set of values
of {n,p}. These indices are obtained as follows:

B = nzremn/N]; o =1+ (n— B)/N;
o = nzremp/N}; e=1+(p—0a)/N,

where nzrem is a user-defined function prescribed as fol-
lows: nzrem[A/B] = remainder[A/B] if the remainder is
non-zero; otherwise nzrem[A/B] = B. As an example,
consider the case of the last line in Equation (14). Here,
n=2,p=4,and N = 2. Thus, applying Equation (20),
we get: B=2,a =1, a =2, and € = 2, in agreement
with the last line of Equation (14). We should note that
there are other ways to determine these coefficients as
well, using the greatest integer function, for example.
Once (o,fB) and (g,) have been obtained, set p,, to
be 1 while setting the other elements to 0, evaluate the
O matrix using Equation (7), and then pick out O, and

(20

assign it to M,,,. Then repeat this procedure of evaluating
the O matrix every time with different element of the p
matrix set to 1 sequentially, until all elements of the M
matrix have been calculated.

The steps for finding S and W, as defined in Equation
(18) for the case of a two-level system, are rather simple.
The last column of the M matrix barring the very last
element is the S matrix. In order to determine the ele-
ments of W, find first the M’ matrix, which is obtained
from M by eliminating the last row and the last column,
as illustrated in Equation (17a) for a two-level system.
Define W; and M’; as the i-th column of the # and the
M’ matrix, Then, update a selected set of W; using an
index k running from 1 to (N — 1), as follows:

Wi—1w ek = My ik — S- 2D

To illustrate this rule, consider, for example, the case
where N = 3. In this case, W; = M; — S (for k= 1) and
Ws = Ms — S (for k = 2), and the other six columns
remain the same. With S and W thus determined,
Equation (20) is used to find the steady-state solution
vector: B. A particular element of the density matrix, pj
(excluding pyy), corresponds to the (G — 1)N + k)-th
element of the B vector. The population in the N-th
level, pyy is simply obtained from the knowledge of the
steady- state populations in all other levels and the
constraint Ef; p; = 1. Explicitly, we can write:
(N=1)
pw=1- > B((j— )N +)), (22)
J=1
where we have used the notation that B(k) represents the
k-th element of the B vector.
A Matlab code for an N-level system, applied to the
case of two levels, is shown in Appendix 1. The code is

0.5

0451

0.35}

-100 -80 -60 -40 -20 0 20 40 60 80 100
ST

Figure 2. Population of excited state for a two-level system
calculated using this algorithm. See text for details. (The colour
version of this figure is included in the online version of the
journal.)
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valid for a general system; only N (number of levels in
the system), and the effective, complex Hamiltonian
(Equation (6)) and the source terms (Equation (8)) need
to be changed. The rest of the program does not have to
be changed. Of course, the plotting commands would
have to be defined by the user based on the information
being sought. As an example, the population of the
excited state as a function of the detuning, 6, produced
by this code, is plotted in Figure 2.

3. A three-level system

The two-level problem discussed above is somewhat
trivial, and may mask the generality of the algorithm.
Therefore, we include here the specific steps for a three-
level A system [6-11], shown in Figure 3, in order to
elucidate how the algorithm is completely scalable to an
arbitrary number of energy levels involved. In this case,
the Hamiltonian under electric dipole and rotating wave
approximations is given by

Q. .
o] 0 gﬁ ez(aat
H =" 0 o Tbei“”’t (23)
Q. . Q.
7 lat 71) iwpt w3

where hw;, hw,, and hws are the energies of the three
levels, and w, and wy, are the frequencies of the laser fields.

After applying the interaction picture transformation
using the following matrix

ei()t 0 0
R=10 & 0 (24)
0 0 eiet
1Y
............... | ra-a

v |

Figure 3. Schematic illustration of a three-level system. See
text for details.

Where H:wl—%,ﬁzw2+ %,Azéa—éh,éz
(00 + 65)/2,04 = w4 — (W3 — 1), 6p = W — (W3 — @),
the Hamiltonian can be expressed as

(A 0
H=30 - @ 5)
Q O 26

The transformed state vector for each atom can be
written as

(26)
(

The time-independent Hamiltonian H of Equation (25)
can be written down by inspection, following the discus-
sion presented earlier for the two-level system. First, we
observe that the energy difference between |1) and |3)
(ﬁll — ﬁ33) is hd,, and the energy difference between
|2) and [3) (Hy — Has) is hd,. Next, we make a judi-
cious but arbitrary choice that {H;, HEHA. We then get
that Hy; = —hd which in turn implies that {Hy =lA.
The off-diagonal terms are, of course, obvious, with
non-zero elements for transitions excited by fields. This
approach is generic, and can be used to find the time
independent Hamiltonian by inspection for an arbitrary
number of levels. We should note that a complication
exists when closed-loop excitations are present. In that
case, it is wiser to work out the Hamiltonian explicitly
using the transformation matrix approach outlined here.
We now add the decay term to get the complex
Hamiltonian

. él(f)
) =Rl) = | Ca(1)
Cs t)

Y Q,
H=(0 & o 7
Q, Q —il-20

We assume that the population of the excited state
decays at the same rate (I'/2) from |3) to |1) and from
|3) to |2). Now we construct the M matrix for the three-
level system which satisfies the following equation under
the steady-state condition:

My My My My Mis Mis Mip Mg Mg | | pi
My My My My Mys My My Mys My | | pio
My My, My Mg Mzs Mze Mz, Msg Msg | | pi3
My My Myz Mag Mys Mas Mgz Mag Mg | | p21
Msy Msy Msy Msqg Mss Mss Ms; Msg Mso | | p | = 0.
Ms1 Mgy Mz Mesa Mes Mes Ms; Mes Moo | | P23
My Mz Mz Mpy Mps Mz My Mrg My | | pai
Mgy Mgy Mgz Mgqg Mgs Mgs Mgy Mg Mgo | | p32
| Mor Moy Moz Moy Mos Mos Moy Moy Moo | | p33 |
(28)

The elements of the M matrix can be found explicitly by
following the same steps as shown in Equations (7)
through (13) for the two-level system. Alternatively,
these can be found by using the algorithmic approach
outlined in Equation (20), and implemented by a
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computer code. The M-matrix can be obtained in O(N?)
steps as opposed O(N*) that would be needed using the
method prescribed thus far, but it is non-intuitive and
masks the understanding of the algorithm. We have out-
lined the faster method in the appendix.

Substituting p11+p22+p33= 1 into Equation (28), we
get

My My My My Mis My Mz Mg | [ pn]
My My My My Mys My My, My | | pi2
My Mz Mz Mzy Mss Mg Mz; Msg | | pi3
My My Myz Myy Mys Mis My Mag | | p2
Msy Msy Msy Msq Mss Msg Ms; Msg | | px
Mer Mey Mesy Mss Mgs Mes Mes7 Meg | | p23
My M7 My My Mzs M Mz Mg | | pa

Mgy Mgy Mgz Mgy Mgs Mgs Mg, Mgg | | p32 |

or
[(My1 —Myg) My My My (Mis—My) M My
(My1 — Mag) My Moy My (Mas — M) My Moy
(M1 —Mzo) Mzy Mz Myy  (Mzs —Msg) Mzs Msg
(M1 — Mao) My Myz Mus  (Mas — Mao) Mis My
(Ms) — Mso) Msy Msy Msy (Mss —Msy) Msg Msy
(Ms1 —Mgo) Mgy Mgz Moy (Mgs — Meo) Mgs Moz
(M71 — Mz9) My, Mzz My (Mzs — M) Mzs Mg

| (Mg — Mygo) Mgy Mgz Mgy (Mgs —Mgo) Mse Mgy

4. Applying the code to a system with an arbitrary
number of energy levels

There are many examples in atomic and molecular physics
where it is necessary to include a large number of energy
levels. One example is an atomic clock employing coher-
ent population trapping [12]. The basic process employs

Mg Mg Mo
My My My
Msy Mso M3
%:Z P11+ %:Z T = %‘5‘2 (29a)
Mo Mo Mo
Mg Mg M7
| Mg | | Mo | | Mo |
M| [ o] [ Mo ]
Mg | | p12 Mg
Mg | | p13 Mg
Mg | | p21 | | Ma
Msg | | p2| | Mso | (29)
Mes | | p23 Mo
Mg | | p31 My
Mgs | | p32 ] | Mso |

To simplify the above expression, we define the following objects as before

P | Mo (M — M) My M

P12 My (My1 — Myy) Mxn My

P13 Mo (M3 — Mzg) Msy  Mas

B_ éZI g— Mo W= (May — Myo) My Mg

P22 Msy (Ms; — Msg) Msy Ms3

P23 Mo (Mg — Mgo) Mgy M3

P31 Mg (M7 — M79) M7y M3

| P32 | | My | | (Ms1 — Mgo) Mg, Mgs
Substituting them into Equation (29b), we get

WB=—SorB=—-W"'S. (30)

The Matlab program shown in Appendix 2 imple-
ments our algorithm for the three-level system. Note that
this program is essentially the same as the program for
the two-level case with the following modifications: we
have (a) defined additional parameters relevant to this
system, (b) entered proper elements in the Hamiltonian,
and (c) added appropriate source terms for the popula-
tions. As an example, we have shown in Figure 4 a plot
of the population of the excited state, produced using
this code, displaying the well-known coherent population
trapping dip.

My (Mys — M) Mg My; Mg
My (Mas — M) Mys My Moy
Msy  (Mzs — Mso) Mzs Mz Mg
My (Mys — Mao) Mas Myz Mg
Msy  (Mss — Msg) Mss Ms;  Msg
Mes  (Mss — Meo) Mes M7 Meg
My (Mzs — Myy) Mze M7 Mg
Mgy  (Mgs — Mgo) Mgs Mg Mss |

only three Zeeman sublevels. However, the other Zeeman
sublevels have to be taken into account in order to
describe the behavior of the clock accurately, Using alkali
atoms for other applications such as atomic interferometry,
magnetometry, and Zeno-effect based switching also
requires taking into account a large number of Zeeman
sublevels [13—16]. Another example is the cooling of mol-
ecules using lasers. In this case, many rotational and vibra-
tional levels have to be considered [17]. The code
presented here can be applied readily to these problems,
with the following modifications: (a) define additional
parameters to characterize the problem; (b) develop the
time independent Hamiltonian (possibly by inspection
using the technique described earlier, if no closed-loop
excitation is present); (c¢) add proper decay terms to the
Hamiltonian; (d) add appropriate source terms for the
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s ' ' consider here a process where a ladder transition in ®'Rb
is used to affect the polarization of a probe beam (upper
leg) by varying parameters for the control beam (lower
02 1 leg). The excitation process is illustrated schematically in
Figure 5, for one particular configuration where the con-
015} trol beam is right circularly polarized, and the probe is lin-
o early polarized. Because of the asymmetry introduced by
< ‘G( the control, it is expected that the left circular component
SR N Lo ”‘ £ the probe would experi h larger phase shif
\0“ of the probe would experience a much larger phase shift,
which in turn would induce an effective rotation of the
05F probe polarization. Thus, the system can be viewed as an
optically controlled waveplate for the probe. Here, we use
0 _ the generalized algorithm to compute the response of this
20 a5 a -5 0 : 10 15 20 system. Of course, the response of the system under vari-

AT

Figure 4. Population of the excited state for a three-level
system calculated using this algorithm. See text for details.
(The colour version of this figure is included in the online
version of the journal.)

populations & transverse decay terms; and (e) add plotting
instructions for components of interest from the solution
vector. Of course, if numerical techniques are to be
employed for finding time-dependent solutions, the code
can be truncated after the M matrix is determined, fol-
lowed by application of Equation (12) along with a proper
choice of initial conditions.

5. Applying the code to a specific system with 15
energy levels: an optically controlled waveplate

As an explicit example of a system involving a non-trivial

ous experimental conditions would be quite different. The
interactions of the pump (~795 nm) and the probe (~1323
nm) are modeled as follows. The pump is either left or
right circularly polarized, and is tuned between the 58S,
F=1to 5P1/2, F' =1 and the 58]/2, F=1to 5P1/2, F'=2
transitions, with a detuning of §,, as illustrated in Figure 5.
The probe, linearly polarized, is tuned to the 5Py, F' =1
to 6S1,5, F" = 1 transition, with a detuning of 3;. Due to
Doppler broadening, it is important to consider the inter-
action of the 5P, F’ = 2 level with both the pump and
probe optical fields. For example, 5, = 814.5 MHz corre-
sponds to the situation where the pump is resonant with
the 5S,/,, F =1 to 5P/, F' = 2 transition and 6, = —814.5
MHz corresponds to the situation where the probe is reso-
nant with the 5P, F' = 2 to 6S;,, F"" = 1 transition. In
our model, we ignore the coherent coupling between
581, F = 2 and the 5P, manifold, because of the large
frequency difference between 5S;,, FF = 1 and 5S;,,

number of energy levels and optical transitions, we
1 * 4 »
a, | o L
! v LY
A ™
GSIIZ’F"=1 >y !
I \ Fl
r ! A/
A,=0.816 GHz ! s R
Ve(ls V3Qs 0 s
’ ! L
) T b /
'= - . L FALY
5Py F'=2 —=L = 4
r
; 1\
5Py, F'=1 oy’ —%&0 ‘
r
/! !
{ip /‘ Of
/! ’ ’
1p ! {p
/ ,!.
/ /
/ /
S 1> 2>
[ 2 = 0 1 2|

Figure 5.
(m = _2>

Fifteen-level system for polarization rotation in *’Rb. |n): Eigenstate of the system (n = 1
—1, 0, 1, 2). The decay rates of 6S;,, and 5P, levels are I', and I'y,, respectively. I'y: ground state dephasing rate. Rabi

2,...15); m: Zeeman sublevels

frequencies on the various legs are proportional to dipole strength matrix elements. (The colour version of this figure is included in

the online version of the journal.)
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F = 2 (~6.8 GHz for ®’Rb). However, we take into
account the decay of atoms from the 5P;,, manifold to the
581, F = 2 state. Furthermore, we account for collisional
relaxation (at a rate I'y) between 5S,,, F =1 and 5S,),,
F = 2 manifolds, in order to model the behavior of atoms
in a vapor cell. Finally, we also take into account the
decay of atoms from 6S;,,, F"' = 1 to the 5S,,, manifold
via the 5Pz, manifold in an approximate manner.

The Rabi frequency of each transition is proportional
to the corresponding dipole moment matrix elements. In
Figure 5, all the Rabi frequencies are expressed as a
multiple of the Rabi frequency corresponding to the
weakest transition [18]. For example, the dipole matrix
elements of o' transitions for the 5S,,—5P;, excitation
are tabulated in Table 1. Thus, if we set the coupling
between |1) and |5) to be Hs5 = —Qzﬂ, then the other
coupling terms for the lower leg are as follows:

N Q. - Q. - V3Q
Ho=—"2 g —_>P" [ V7ot
1,9 2 s £12.6 2 s 112,10 2 )
N V6Q,
=TT

The decay rates between any two Zeeman sub-levels
are assumed to be proportional to the squares of the
dipole moment matrix elements such that the sum of all
the decay rates equals the net decay rate from that level.
We assume all the Zeeman sub-levels in the 5P, and
6S;,, manifold decay at the same rate, I', and I', respec-
tively. To illustrate how the decay terms are determined,
consider, for example, state |5), which denotes the Zee-
man sublevel 5P, F' = 1, mg = 0. The dipole matrix
elements for all allowed transitions from this state to the
various sublevels within the 5S;,, manifold are shown in
Figure 6. With the decay rate from |5) to the 5S;,, mani-
fold being I',, the decay rate from |5) to |1) (or |2)) is
I, /12. The decay from |5) to |15) (5S;, F = 2) is cal-
culated by adding the squares of the matrix elements for

5P, l|,?,I"=l.

795nin

ss, F=2

jTegd

55

F=1

e

7 \
11> 12> 13>

il I I 1 R 6 A

Figure 6. Dipole matrix elements for all allowed transitions
from the 5P, F' = 1, mg = 0 sublevel to the various sublevels
in the 5S;, manifold. (The colour version of this figure is
included in the online version of the journal.)

all transitions between |5) and the Zeeman levels of
[15), and this turns out to be 5I,/6.

We have also taken into account the sourcing of
atoms into the ground states from the 6S;,, state via the
5P5), state. These additional source terms are modeled
using an ‘effective decay rate’ (I'y;) directly from the
Zeeman sub-levels in the 6S;,,, F"' = 1 level to the 5S;),
manifold. It is then assumed that all the Zeeman
sub-levels at the 6S;,, F"" = 1 level decays equally to
the Zeeman sub-levels of 7' =1 and F' = 2 levels at this
rate. In Figure 7, the branching ratios between the vari-
ous hyperfine levels and the effective decay rates from
the 6S;,, F" = 1 level to the 5S;, manifold are shown.
For our initial computations, we used a rough estimate
for I',;. A more detailed calculation, taking into account
the various branching ratios into and from all the hyper-
fine levels of the 5P;, state can be used to determine
I'v;. However, we found that the results did not change
significantly when T',; was changed slightly and hence
using an approximate value is justified.

The goal of the—simulation—ef the process illustrated
in Figure 5 is to determine how the state of a linearly
polarized probe beam (at 1323 nm) is affected by its
passage through a vapor cell of length L and density n,
in the presence of a circularly polarized pump beam (at
795 nm). Thus, before presenting the details of the
atom-laser interaction, we specify the terminology rele-
vant for characterizing the probe beam, using the Jones
vector formulation. We consider the direction of propa-
gation as the z-axis, and the input probe to be linearly
polarized in the x direction. Thus, the input probe can be
described as:

Figure 7. Branching ratios between the hyperfine levels and
the effective decay rates from the F”" = 1 level to the 5S;,
manifold. See text for details. (The colour version of this figure
is included in the online version of the journal.)
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J probe,input = [0} :E{i} +5[—i] (1) Hs) = Hys, Hss = —0p — iz, Hspp = Hs 14 = =55
5 The second part of Equation (31) indicates that the
. . . . o . e a - Q
linear polar.lzat.lon has been decgmposed 1nt9 a .rlght cir Hep= B, He = —0p —im, Heps = .
cular polarization and a left circular polarization. The ’ 2 2
effect of propagation through the cell can now be mod- -
- . - a ~ 6Q)
10 eled by expressing the output Jones vector as follows: Fpg=A—op— if’ fin., & 5 s
7 N R P O I O g
Jprobt:.output - 5 |: i :| € + E - e ) (32) ~ o . \/§QS
HS,SZA_éP_lE»HS,B: 7

where o (x_) and @, (@_) are the attenuation and
phase shift experienced by the right (left) circular
component, respectively.

15 In order to make the system behave as an ideal half
waveplate, for example, the phase difference between the
right and left polarization components (|0, — (_|) should
be equal to m, and the attenuation for each component
should equal zero (a4 = o~ = 0). In that case, the output

20 expression can be simplified as:
- L[] 9 L1 4 1 4
Jprobe,output :E |:l:|e] + +§ |:—l':|e/ - :Ee] -
< ([Hema |1 ]) = e02]?],
i —i 1
(33)
which is polarized linearly in the y-direction. In practice,
the attenuation coefficients are non-vanishing. However, if
25 they are equal to each other (i.e. «, = o), then they sim-

ply reduce the amplitude of the signal, without affecting
the sense of polarization. Of course, the phase difference
(@, = @_) can have a wide range of values, correspond-
ing to different output polarization states. In what follows,
30  we solve the density matrix equation of motion for the
15-level system shown in Figure 5, in order to determine
the four quantities of interest: @, ®_, oy, or_.
The time-independent Hamiltonian after moving to a
rotating basis and the RWA can be written down using
35  the method we described in Sections 2 and 3. Given the
large number of levels, we use below a compact nota-
tion, rather than a matrix, to express the Hamiltonian.
Specifically, H is given by (setting 7 = 1):

N g - Qp - Qp
Hi,=—i2 Hs=—— Ho¢g=——;
1,1 12, 15 5 19 5
> Al Qp - \/§QP
Hy, =—i2 Hyg=—— Hyj0= — ;
2,2 12, 2,6 7’ 2,10 7
40
) .. V60
H3,3=—l§,H3.11 ) = -
H, op— s H, al
= — — 11— :__;
4.4 P RREERE )

. = . ¥a) Q Q
Ho1 =Hjy, Hop :A—5P—l§7 Hopo =—, Hous =—;

pon—g
: e a - 30,
H1072 = H§,107 HlO,lO =A- 5P - 15, H10713 = 2 q;
8 T ] 4 6Q)
H11,3 :H3’11) Hll,ll :A_(sP—lE, H11’14: 3 S;

'S ] a [ ~* ] ~*
Hizs = Hs 2 st, Hizp = H7 5, Hizg =Hg 5,
- b
Hip1p = —ds — dp — i
] N* 'S ~* 1 N*
H1374 = H4_,13a H1376 - H67137 H13,8 - Hg,13a
) . b
His,10 = Hjg 13, Hiz g3 = —ds — dp — i
Hys=H:,, Hyuo=H:,, H =H

5 514> H149 9,14> 14,11 11,145

Hig 4 = =85 — 0p — iz

~ g

His s = —i e
All the other terms of H are equal to zero. We then add
the population source terms to the Hamiltonian. We
assume the decay rates from F"' = 1 to 5Py, (I'py) are
equal to the effective decay rate from F"' = 1 to 5S;,,
(T'p). Thus, T'yy = al'y, Ty = (1 — o), where o = 0.5,

dp1: a a a
W (P4s + pss +P99)E+P77§+P881
bi g
+ (P12.12 + P13.13 + P14.14) 13 + P15,15 3
dpy a a a a
T (Pag + Pos) B + Pgs 2 + Pgg 3 =+ P1o,10 4
bi g
+ (P12.12 + L1313 + P1a1a) 13 + P15.15 3
dpsz a a a
I (pss + Pes + Po9) D + P1010 4 + P 3
bi g
+ (P12.12 + L1313 + P1a1a) 13 + P15,15 3
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Table 1. %Rb DI (5S1 — 5Py,) dipole matrix elements for dpll,ll bd
o transition (F = 1, mg — F', m = mp + 1). Q dr = ,0141147,
mrp = -1 mr = 0 mr = 1
dpisis 34
F =2 e N N 0 - (P11 + P22+ P33)ge T (Pas + Pss + Pes) 6
12 4 2 a
o 1 1 +(P77+P88+P99+P10,10+Pn,11)§
- V12 12 Spi
+ (p12,12 + P1313 + .014.,14)?-
d bd bd . .. [
% =Py + 1313 oL The attenuation and the additional phase shift introduced
! by the Rb medium (as compared to free space
dps;s bd bd propagation) of the signal beam can be expressed as:
—_— = — —|'- — .
dr P12,12 12 P14,14 12’ phase:
B
dpes bd bd ¢, = kL—JrRe(als,4,013,4 T aasP1as T AP
—, = P131375 T P1414T5 2
dt o 112 o 1172
5 +aigpizg + a149P149)s
dpy; bd
ar = P12,12 20 B
. - - ¢_=kL 7R6(012,5P12,5 +ai36p136 T @12,9P12,9
Pgg ey “Y
dr P12,12 4 RIRZERE 4’ +ai3,10P13,10 6114,11[)14,11)-
10 .
dpgg bd bd bd attenuation:
T P12,12 12 P13,13 3 P14,14 12° % = ekaﬁ+Im(4113,4l713,4+a14.5/114.5Jrlllz.,7p12,7Jrals,sﬂls,xJr¢114.9/)14.9)/27
dp;;’lo = P13.13 % L p14’14b47d’ o = e*kLﬂJm(alz,sP12,5+a|3.6P13,5+a12.9ﬂ12,9+013,10P13,10+a|4‘|1P14,11)/2_
(3)03 Phase shift of sigp (b) 5 Phase shift of sigm (C) . Phase shift diff
F]
02 k]
= = B
& 01 = =
o o ]
E g S o
g [T £ 0 g0
= i = r— —
i 01 i —~— E
3 02 z =
a [ 3
03 o
£
04 - - ; 5 - : : 5 : - :
-200 -100 0 100 200 200 100 0 .“Q 100 200 200 100 0 100 200
Probe detuning (in units of ) Drupe{is%m?&}n u&itsofl’a] Probe detuning (in units of I))
, 0“0 &g\\“ :
(d) Amp atten of sigp (e) N\ of sigm (A Amp atten diff
1 1 1
_ =\ z ﬁﬁmc _
£ 005 8 2
> s 08 S 08
Z 09 [ Fy
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Figure 8. Simulation result of an optically controlled waveplate using 15 levels in ¥’Rb. See text for details. (The colour version of

this figure is included in the online version of the journal.)

20


nachiketa
Highlight

nachiketa
Highlight

nachiketa
Sticky Note
It would be preferable for Table 1 to appear before Figure 6.


10

N
D

30

40

i
S

TMOP 865806
2 December 2013

Initial

QA: KS

Journal of Modern Optics

and

13

ﬁi _ 2 3nammF/L
min ’

g 47'[29,,1,‘,1

where & is the wavevector of the signal beam, which is
at 1323 nm, L is the length of the cell, which is set to
be 15 cm, ng4,,, is the density of Rb atoms, which is set
to be 10'°/m?, €2, is the Rabi frequency for the weak-
est probe transition (for example, the [14)—|9) transition
in our model) and the various a;’s are the ratios of the
Rabi frequency (£2;) of the |i) —|j) transition to 2.
For example, a127 = Q12.7/Q49 = V6. b%,, is the frac-
tion of the atoms (<1) that decay along the transition
corresponding to €),;,, among all allowed decay chan-
nels from the decaying level. In our model, the ampli-
tudes for all possible transitions from |14) are in the
ratio 1:1:1:4/3:v/6 and hence the fraction of atoms that
decay along the different channels are in the ratio
1:1:1:3:6. Thus, b2, = 1/(1+1+1+3+6)=1/12.

Setting the pump frequency at a certain value
(6, = A, which corresponds to the situation when the
pump is resonant with the F = 1 to F’' = 2 transition)
and scanning the probe detuning (J5), we can plot the
various quantities of interest (@, ®_,x,, o_) as a func-
tion of J,, as shown in Figure 8. The relevant parameters
used for this particular simulation are as follows. The
decay rates I',, I', and I'y are 2m x 5.75 s 2m x 3.45
s™', and 21 x 0.1 s~', respectively. We perform our cal-
culations by setting I', to unity and rescaling all parame-
ters in units of [',. The separation A, between F'= 1 and
F'=21s 2n x 814.5 5! (= 141.4T,) and the probe de-
tuning (Js) ranges from —200T", to 200I",. The Rabi fre-
quencies have been chosen to be €, =5I,, and
Q, = 0.1T",. Figures 8(a) and 8(b) show the additional
phase shifts produced by the Rb medium for the right
and left circular polarization parts of the signal beam and
Figure 8(c) shows the difference between them. Figures
8(d)-8(f) show the corresponding figures for attenuation.
For example, at 8; = 200, we have a differential attenua-
tion of ~0 and a differential phase shift of about 30°.
Since the main purpose of this paper is to illustrate the
application of the algorithm for obtaining the solution to
the density matrix equations for a large quantum system,
we refrain from exploring the parameter space in detail.
Actual experimental results and conditions necessary to
produce a differential phase shift of © with virtually no
differential attenuation (and thus allowing us to use the
optically controlled waveplate for all-optical switching)
are presented in a separate paper [19].

5. Conclusion

We have presented a novel algorithm for efficiently find-
ing the solution to the density matrix equations for an
atomic system with arbitrary number of energy levels. For
this purpose, the Liouville equation that describes the time

11

evolution of the density matrix is formulated as a matrix-
vector equation. We presented an algorithm that allows us
to find the elements of the evolution matrix with ease for
systems with arbitrarily large value of N. As examples,
we then used the algorithm to find steady-state solutions
for atomic systems consisting of two- and three- levels.
We also described a comprehensive model (consisting of
15 levels) for an optically controlled waveplate using
the 5S;,—5P;»—6S;, cascade system. Finally, we used
the algorithm to obtain the steady state solution for the
15-level system. The algorithm and the Matlab codes
presented here should prove very useful for the atomic
and molecular physics community.
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Appendix 1: Matlab program for solving the two-level problem

omeg=5; % express rabi freq, normalized to gamma
N=2; % number of energy levels
R=401 % number of points to plot
% initialize and set dimensions for all matrices
delta=zeros (1,R); $detuning array
M=zeros (N"2,N"2); $M-matrix
rho=zeros (N, N) ; %dens mat
Ham=zeros (N, N) ; $Hamiltonian with decay
Q=zeros (N, N) ; $matrix corresponding to derivative of the density matrix
W=zeros ( (N*2-1), (N*2-1)); $W-matrix
S=zeros ((N*2-1),1); %$S-vector
B=zeros ((N*2-1),1); %$B-vector
A=zeros (N"2,R); $A-vectors, for all detunings
for m=1:R $start the overall-loop
delta(l,m)=(m-(R+1)/2)/2; %define the detuning, normalized to gamma
Ham=[0 omeg/2; omeg/2 (delta(l,m)+0.5i)*(-1)]; %elements of Hamiltonian
for n=1:N"2 %start the outer-loop for finding elements of M;

for p=1:N"2 S&start inner-loop for finding elements of M;

o©°

M(n,p) equals Q(alpha,beta) with only rho(epsilon,
sigma)=1, and other elements of rho set to zero.

o\

%$determining dummy coefficients alpha and beta
remain=rem(n,N) ;
if remain==
beta=N;
else beta=remain;
end
alpha=(1+ (n-beta) /N) ;

%determining dummy coefficients epsilon and sigma
remain=rem (p,N) ;
if remain==
sigma=Nj;
else sigma=remain;
end
epsilon=(1+ (p-sigma) /N)

rho=zeros (N,N) ; %$reset rho to all zeros

rho (epsilon, sigma)=1; %pick one element to be unity
Q= (Ham*rho-rho*conj (Ham) ) * (0-11); %$find first part of Q matrix
Q(1,1)=0Q(1,1)+rho(2,2); %add pop source term to Q

$For an N-levl system, add additional
%source terms as needed
M(n,p)=Q (alpha,beta) ;

end %end the inner-loop for finding elements of M
end %end of the outer-loop for finding elements of M
(1: (N"2-1),N"2:N"2); $find S-vector
(1: (N*2-1),1:(N"2-1)); %$initialize W-matrix

for d=1:(N-1)
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W(:, ((d=1)*N+d))=W(:, ((d-1) *N+d))-S; Supdate W by subtracting
$from selected columns

end
B=(W\S)*(-1); %find B-vector: primary solution
rhonn=1; %initialize pop of N-th state

$determine pop of N-th state
for f=1:(N-1)
rhonn=rhonn-B(( (£-1) *N+f), 1);
end
%determine the elements of the A vector
A(l: (N"2-1),m)=B;
A(N"2,m)=rhonn;

end send of over-all loop
plot (delta,real (A((N*2-0),:)))
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Appendix 2: Matlab program for solving the three-level problem
oma=1; omb=1; % express omeg rabi fregs, in units of gamma
dels=0; % common detuning set to zero
N=3; % number of energy levels
R=401 % number of points to plot

$initialize and set dimensions for all matrices

del=zeros(1,R);
M=zeros (N"2,N"2) ;
rho=zeros (N, N) ;
Ham=zeros (N, N) ;

$M-matrix

sdensity matrix
%$Hamiltonian with decay

$diff detuning array

Q=zeros (N,N) ; tmatrix representing derivative of density matrix
W=zeros ((N*2-1), (N*2-1)); SW-matrix
S=zeros ((N*2-1),1); %$S-vector
B=zeros ((N*2-1),1); %$B-vector
A=zeros (N"2,R); $A-vectors, for all detunings
for m=1:R $start the overall-loop
del(l,m)=(m-(R+1)/2)/10; %define the detuning
Ham=[del(1,m) /2 0 oma/2; 0 del(l,m)*(-1)/2 omb/2;

oma/2 omb/2
for n=1:N"2
for p=1:N"2

(dels+0.51) * (

-1)1;
$start the outer-loop for finding elements of M;
$start inner-loop for finding elements of M;

$finding alpha and beta

remain=rem(n,N) ;

if remain==0
beta=N;

else beta=remain;

end

alpha=(1+ (n-beta) /N)

%$finding epsilon and sigma

remain=rem (p,N) ;

if remain==
sigma=N;

else sigma=remain;

end

epsilon=(1+ (p-sigma) /N)

rho=zeros (N, N) ;

rho (epsilon, sigma)=1;

Q= (Ham*rho-rho*con’j (Ham) ) *

0(1,1)=0(1,1)+rho(3,3)/2;
0(2,2)=Q0(2,2)+rho(3,3)/2;
M(n,p)=Q (alpha, beta) ;
end
end

S=M(1l: (N*"2-1),N"2:N"2);

W=M(1l: (N*2-1),1:(N"2-1));
for d=1:(N-1)

W(:, ((d=1)*N+d))=W(:,

((d-1) *N+d) ) -S;

%$reset rho to all zeros
$pick one element to unity
(0-11); %find first part of Q matrix

%add pop source term to Q
%add pop source term to Q
tModify as needed for general
%systems

%end the inner-loop for finding elements of M
%end of the outer-loop for finding elements of M

%$find S-vector
%initialize W-matrix

%update W by subtracting
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end
B=(W\S) * (-1) ;

rhonn=1;

$from selected columns

$find B-vector: primary solution

%initialize pop of N-th state

%determine pop of N-th state

for £=1:(N-1)

rhonn=rhonn-B ( ( (£-1) *N+f), 1);

end

$determine elements of A vector

A(l: (N*"2-1),m)=B;
A (N"2,m)=rhonn;

end %end of over-all loop

plot(del,real( A ( (N*2-0),: ) ) )

Appendix 3: Algorithm optimization

The crux of the algorithm is to obtain the M matrix in an auto-
mated fashion. The most obvious, but rather elaborate (O (N*)
operations) way to perform this task has been illustrated previ-
ously. However, several simplifications can be made to the
algorithm so that the entire process can be accomplished using
O (N?) operations and also avoid some other redundant opera-
tions, thereby increasing the speed by a factor of ~N?. To do
this, we first observe that instead of evaluating the M matrix
row-wise as was shown before, it is more beneficial to evaluate
it column wise. Each column in the M matrix is simply
obtained by successively setting each of the density matrix ele-
ments to 1, while setting all others to 0. Thus, the entire first
column can be obtained be setting p;;=1 and all other p; = 0,
second column with p;, = 0 and all other p; = 0 and so on. In
general, by setting p.; = 1 and all other density matrix ele-
ments to 0, we obtain the ((¢ — 1)N + o)th column of the M
matrix where each of € and o vary from 1 to V.

Furthermore, it is to be noted that the computation Hp—pH"
involve multiplication of extremely sparse matrices, since only
one of the elements of the p matrix is 1 each time. It is evident
that each column of the M matrix will simply be made up of cer-
tain columns of the Hamiltonian. Thus, the task is reduced to (a)
figuring out the pattern of columns that are picked out from the
Hamiltonian and (b) identify the locations in the AM-matrix,
where they would be filled. To illustrate this clearly, it is conve-
nient to treat the calculation of the M-matrix as arising from two
separate computations: Hp and pH™. Let us consider a specific

case when py; = 1. The pH" computations would pick the oth
column of the Hamiltonian (with its elements conjugated) to be
placed between rows (¢ — 1)N + 1 and eN of the ((¢ — 1)N + o)th
column of the M matrix. The Hp computations, on other hand,
would pick the elements of the sth column of the Hamiltonian
(with the elements picking up an extra negative sign) and popu-
late the following rows of the ((¢ — 1)N + o)th column of the M
matrix: oth row, (¢ + N)th row, (o + 2N)th row and so on until
the (o + N(NV — 1))th row. When, this process is repeated for each
element of the density matrix, the M-matrix, barring the sourse
terms would have been computed.

Finally, the addition of the source terms can also be simpli-
fied by choosing to modify the M-matrix only when one of the
diagonal elements of the density matrix is set to 1, i.e pge = 1,
where € = 1 to N. Furthermore, instead of adding the source
terms in-line, as was done previously, we can simply pre-define
a ‘source matrix’ and simply pick off the elements of this
matrix that would then be added to the appropriate entries in
the M-matrix. For example, one way of defining such a ‘source
matrix’ would be to have the coefficients of the p,. in all the
source equations (from dp,,/dt to dpyy/dt) along the eth col-
umn of the source matrix. Now, all that needs to be done is to
simply add the eth column of the source matrix to the ((¢ — 1)
N + ¢)th column of the previously computed M matrix when-
ever pg; = 1. As an illustration of these optimization steps, we
reproduce below a modified version of the code for a three-
level system, which should be contrasted with the un-optimized
code for the same system presented in Appendix 2.
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o

oma=1; omb=1;
dels=0;
N=3;

R=401

o° 0P

o°

%1
del=zeros (1,R); %
M=zeros (N"2,N"2) ;
rho=zeros (N, N) ;
Ham=zeros (N, N) ;
W=zeros ( (N*2-1), (N2
S=zeros ((N*2-1),1);
B=zeros ((N"2-1),1);
A=zeros (N"2,R);

Q source=[0 0 1/2;
00 1/2;
00 071;

for m=1:R

del (1,m)=(m

Ham= [del(l y/2 0
0 del(l,m)* (-
oma/2 omb/2

(R+1) /

col=0; % index for column of M-matrix that will

index1=1:N;

(dels+0.5i)*(—

M.S. Shahriar et al.

express omeg rabi fregs, in units of gamma
common detuning set to zero
number of energy levels
number of points to plot
nitialize and set dimensions for all matrices
diff detuning array
SM-matrix
%density matrix
%$Hamiltonian with decay
1)): SW-matrix
%$S-vector
%B-vector

$A-vectors, for all detunings

%start the overall-loop

2)/10;
oma/Z
) /2 omb/2;

%define the detuning

1)1:

filled.

index2=1:N:N* (N-1)+1;

index3=1:N+1:N"

for n=1:N

for p=1:N

2;
%n keeps track of where in the M matrix the elements of
Ham have to be entered
%p picks the pth column from the Ham

col=col+1;

M(index1l+ (n-1) *N, col)
M (index2+p-1,col)
if n==p

M(index3, col)

=li*conj (H(:,p));

=M (index2+p-1,col)-1i* (H(:,n));

=M (index3,col) +Q source(:,n);

end
end %end the inner-loop for finding elements of M
end
S=M(1l: (N"2-1),N"2:N"2); $find S-vector
W=M(1l: (N*2-1),1:(N*2-1)); $initialize W-matrix
for d=1:(N-1)

W(:, ((d=1)*N+d) )=W(:,

((d=1) *N+d))-S; S%Supdate W by subtracting

$from selected columns

$find B-vector: primary solution!

%$initialize pop of N-th state

rhonn=rhonn-B ( ((£f-1) *N+£f), 1);

end
=(W\S)*(-1);
rhonn=1;

for f=1:(N-1)
end

A(l: (N"2-1),m)
A(N"2,m)=rhonn;

=B;

M=zeros (N"2,N"2) ;

end
plot(del, real( A (

%end of over-all loop

(N*2=0),: ) ) )
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