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Abstract: We demonstrate an optically controlled waveplate at ~1323 nm 
using the 5S1/2-5P1/2-6S1/2 ladder transition in a Rb vapor cell. The lower leg 
of the transitions represents the control beam, while the upper leg represents 
the signal beam. We show that we can place the signal beam in any 
arbitrary polarization state with a suitable choice of polarization of the 
control beam. Specifically, we demonstrate a differential phase retardance 
of ~180 degrees between the two circularly polarized components of a 
linearly polarized signal beam. We also demonstrate that the system can act 
as a Quarter Wave plate. The optical activity responsible for the phase 
retardation process is explained in terms of selection rules involving the 
Zeeman sublevels. As such, the system can be used to realize a fast 
Stokesmetric imaging system with a speed of ~3 MHz. When implemented 
using a tapered nano fiber embedded in a vapor cell, this system can be 
used to realize an ultra-low power all-optical switch as well as a Quantum 
Zeno Effect based all-optical logic gate by combining it with an optically 
controlled polarizer, previously demonstrated by us. We present numerical 
simulations of the system using a comprehensive model which incorporates 
all the relevant Zeeman sub-levels in the system, using a novel algorithm 
recently developed by us for efficient computation of the evolution of an 
arbitrary large scale quantum system. 
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1. Introduction 

All-optical switching is important for optical communication and quantum information 
processing [1–5]. We recently demonstrated a ladder type modulator and proposed a novel 
scheme (employing high pressure buffer gas to broaden the atomic transitions) for a high-
speed modulator (tens of GHz) that can be used to modulate signals at 1323 nm, using a 
control beam at 795 nm [6]. In addition, we have also described experimental schemes to 
realize such modulators at ultra-low powers (~40 pW) using a tapered nano fiber (TNF) [7, 
8]. However, these modulators cannot be used as directional switches, as required in an 
optical communication network. In this paper, we report on the realization of a nearly lossless 
optically controlled waveplate in a cascade system where the lower leg of the cascade, 
transition representing the control beam, rotates the polarization state of the upper leg, 
representing the signal beam. In combination with an optically controlled polarizer, recently 
demonstrated by us [9], the system can also be used to produce a Quantum Zeno Effect 
(QZE) based all-optical logic gate. 

Polarization rotation of a linearly polarized optical field may be induced by an applied 
magnetic field [10, 11], by an applied electric field [12], or by spin-polarizing the medium 
[13–16]. All-optical control refers to a situation where an optical field controls the 
polarization of the probe. Theoretical and experimental investigations of optically controlled 
polarization rotation using ladder transitions in alkali metals have been carried out previously 
[17–21]. However, all of these works employ the EIT effect where the upper leg is excited by 
a strong control field while the lower leg is probed by a weak optical field. Optically 
controlled polarization rotation using the paramagnetic Faraday effect, with the control and 
signal beam on the D2 and D1 lines respectively, has also been studied previously [22]. These 
systems have fundamentally different characteristics than the system we have considered. 
Excited state polarization spectroscopy is related to our work in the sense that they study the 
modification of the properties of the optical field coupling the upper leg [23, 24]. However, 
they are primarily concerned with obtaining adispersion like signal with high SNR for laser 
frequency stabilization [25, 26] and are based on polarization dependent selective absorption 
of the probe, while our work is concerned with nearly lossless polarization rotation intended 
to be used in all-optical switching. Furthermore, in this work, we illustrate the principle of 
obtaining a generalized waveplate, whereby we can place the signal beam in any arbitrary 
polarization state by a suitable choice of the control beam parameters. 

The optically controlled waveplate also has potential applications in Stokesmetric Imaging 
(SI). It is well documented that in many situations of interest, features indiscernible via 
conventional imaging become highly resolved under SI [27–30]. In a typical SI scenario, a 
target is illuminated by fully or partially polarized light. The light scattered or reflected by the 
target is then analyzed using a Stokesmeter, which determines the magnitude of each of the 
four Stokes parameter components. Stokesmeters, in their simplest form, are comprised of a 
combination of polarizers and wave-plates with different orientations. A key problem with the 
existing SI systems is that the polarizers and waveplates cannot be turned on or off or 
reoriented rapidly. The free space version of the optically controlled waveplate that is 
described in this paper has the potential to operate at speeds of ~3 MHz and thus holds the 
promise of making very high speed SI practical. 

Rest of the paper is organized as follows. In section 2, we describe an ideal schematic for 
an optically controlled waveplate, using only four levels. A discussion of the non-idealities in 
the system and a comprehensive model that includes all the relevant Zeeman sub-levels are 
presented in section 3. We describe the experimental set-up in section 4 and a Jones matrix 
analysis of the system is provided in section 5. Experimental results and numerical 
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simulations are presented in section 6. In section 7, we discuss the future work that will be 
pursued. Finally, in section 8, we present our conclusions. 

2. Schematic of optically controlled waveplate and all-optical switch 

In an atomic system involving ladder type transitions, the presence of two different 
frequencies open up the possibility of controlling the behavior of the probe (upper leg) 
polarization by careful design of the pump parameters (lower leg). In particular, it is possible 
to make the vapor cell act as a waveplate. The mechanism for producing controlled 
polarization rotation, is illustrated schematically in Fig. 1, using a cascaded atomic transition 
involving four levels where direct excitation to the upper level from the ground state is dipole 
forbidden. We consider the mF = 0 Zeeman sublevel of a certain hyperfine level into which 
the atoms have been optically pumped, as the ground state. The lower leg is excited by a 
highly off-resonant right-circularly polarized beam (control/pump beam), that produces 
excitations to only the mF = 1 Zeeman sublevel in the intermediate state. The signal beam 
(probe), applied between the intermediate level and the upper level, is linearly polarized with 
the polarization axis orthogonal to the quantization axis, and excites the σ+ and σ- transitions 
on the upper leg. Here, we have assumed that (a) the light beams are propagating in the 
direction of quantization, and (b) that light is defined to be right (left) circularly polarized if, 
when looking along the direction of the Poynting vector, the electric field vector appears as 
rotating in the clock-wise (counter clock-wise) direction. It should be noted that some text 
books and papers follow the opposite convention, under which what we are calling right-
circular polarization would be called left-circular polarization, while others follow the 
convention we are using here. Further, if the traveling wave laser field is propagating opposite 
to the direction of quantization, the mF = 0→ mF = 1 transition is excited by a left circularly 
polarized light according the convention we have used. We assume that the frequency of the 
signal beam is very different from that of the control beam, so that the signal beam only 
couples to the upper leg, and the control beam only couples to the lower leg. The off-resonant 
control beam produces a light shift of the mF = 1 Zeeman sublevel in the intermediate state. If 
the frequency of the signal beam is chosen to be such that its detuning (from the unperturbed 
frequency of the upper leg transition) is significantly different from this light shift, then the 
component of the probe which excites the σ- transitions sees the effect of the pump, and sees 
only a real susceptibility with virtually no absorption, while the component exciting the σ+ 
transitions does not see any effect of the pump. The parameters of the control beam can be 
tuned to achieve the condition for a π phase-shift for the σ- component only, so that at the 
output the linear polarization is rotated by 90 degrees. 

It should be noted that the above schematic can only be used as a polarization rotator for a 
linear polarization of the probe. For example, it can be seen that it is impossible to obtain a 
purely circular polarization of the probe (without any loss), as it would require complete 
absorption on one of the legs of the upper transition. In fact, a simple Jones matrix analysis of 
the above system (in the absence of absorption) shows that the polarization state of the probe 
is ˆ ˆsin cosx yφ φ+    , where φ  is the phase difference introduced between the two legs of 

the signal beam. In order for the system to behave as a quarter wave plate, for example, one 
needs to apply a linearly polarized pump. As shown in Fig. 2, in this scenario, both the mF =  
+ 1 (|2>) and mF = −1 (|3>) states get coupled to the mF = 0 (|1>) state and the effect produced 
is not transparent in the simple schematic discussed above. However, by a suitable rotation of 
the intermediate states, one can reduce the process to a similar scenario, where for any 
arbitrary polarization of the pump, only one of the intermediate states is coupled, while the 
other is decoupled. Explicitly, any arbitrary polarization of the pump can be represented as 

ˆ ˆασ βσ+ −+ , where α and β can be complex. This couples |1> to α*|2> + β*|3> (denoted as | 

+ >), where ‘*’ denotes complex conjugation. The orthogonal state, |1> = α|3>-β|2>, is not 
coupled by the pump, as can be verified by explicit calculation. A similar analysis can be 
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carried out for the probe field as shown in Fig. 2. Now the situation is formally identical to 
the one presented in Fig. 1, where one of the legs sees the effect of the pump while the other 
does not. 
 

 

Fig. 1. Schematic illustration of an optically controlled polarization rotator using circularly 
polarized control beam 

 

Fig. 2. Generalized schematic of an optically controlled waveplate using control beam of 
arbitrary polarization. 

For illustrative purposes, let us consider a probe polarized along the ŷ  direction. 

Denoting ˆ ˆ ˆ / 2x iyσ − = −  and ˆ ˆ ˆ / 2x iyσ + = − − , one obtains ( )ˆ ˆ ˆ / 2y i σ σ− += + . 

Decomposing ŷ  in terms of the rotated basis and introducing a phase shift φ on the field 

coupling the | + > state to |4>, one obtains the following expression for the polarization state 
p̂  of the probe- 
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(1) 

Using appropriate values of α, β and φ, one can obtain circular polarization. For example, 
consider a pump polarized linearly at 45°, for which α = i/(i-1) and β = 1/(i-1). If we now set 

φ = π/2, one obtains σ̂ +  polarization for the probe, as can be verified by explicit substitution 

in Eq. (1). In its most general form, the probe can also be in some arbitrary polarization state. 
All one needs to do is to resolve it in terms of the new rotated orthogonal states and introduce 
a phase shift on one of the legs, leaving the other unaffected. By a suitable choice of the pump 
polarization, one can place the probe in any desired polarization state. 

In our set-up, we utilized the 5S1/2-5P1/2-6S1/2 cascade system in 87Rb atoms, with F = 2 as 
the ground state. The pump and probe beams are at 795 nm and 1323nm respectively. The 
primary reason for choosing the upper leg as the probe is the need for an all-optical switch at 
a telecommunication wavelength. In Fig. 1 and Fig. 2, we showed a simplified set of energy 
levels in order to explain the basic process behind an optically controlled waveplate. In 
practice, however, it is extremely difficult to realize such an ideal system. We first note that it 

is virtually impossible to optically pump all the atoms into the , 5S1/2, F = 2, Fm 0=  

Zeeman sublevel. Hence, Zeeman sub-levels other than mF =  ± 1 at the 5P1/2 manifold also 
get coupled with the pump and probe optical fields. Furthermore, it is generally necessary to 
take into account both hyperfine levels (F’ = 1 and F’ = 2) in the 5P1/2 manifold to account for 
Doppler broadening and power broadening. Thus, the full set of energy levels that need to be 
considered is quite large, and the actual model employed for our system is discussed in the 
next section. For the remainder of the paper, the hyperfine levels in the ground state are 
indicated by unprimed alphabets (F), those in the 5P1/2 level are primed (F’) and those in the 
6S1/2 level are double-primed (F”). 

3. Comprehensive model used for numerical simulation 

In previous analyses of similar systems, a simple model consisting of only the relevant 
hyperfine levels transitions was employed [17, 18]. Other works [31, 32] consider some of the 
Zeeman sub-levels, but make use of few assumptions to eliminate some of the density matrix 
elements to arrive at a somewhat approximate result. In our model, we considered all the 
Zeeman sub-levels which explicitly interact with an optical field (all sub-levels of the F = 2, 
F’ = 1, 2 and F” = 1 hyperfine levels), while the F = 1 hyperfine level and the 5P3/2 level were 
only considered as population transfer levels and hence all their sub-levels were lumped 
together as a single level. The full set of energy levels that we have incorporated in our model 
are shown in Fig. 3. The transition strengths [33–35] indicated are expressed as multiples of 
the weakest transition, which in our case is the transition from the F = 2, mF = 0 sub-level to 
the F’ = 1, mF = 1 sub-level, for example. We assume that the control beam is tuned below the 
F = 2→ F’ = 1 transition while the signal beam is detuned by an amount δs from the F’ = 1→ 
F” = 1 transition. Due to the Doppler width and power broadening, the F’ = 2 hyperfine level 
also interacts with both the control and the signal optical fields (indicated by dashed lines), 
albeit at a large detuning, and these interactions have been taken into account in our model. 
However, we ignored the coherent coupling between F = 1 and the 5P1/2 manifold, because of 
the large frequency difference between F = 1 and F = 2 (~6.8GHz for 87Rb). 
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Fig. 3. Model used for numerical computation. See text for more details. 

All the Zeeman sub-levels in the 5P1/2 (6S1/2) manifold are assumed to decay at the same 
rate, γa~5.75 MHz (γb~3.45 MHz). We also assume a nominal cross-relaxation rate (γg ~0.01 
MHz) between the ground states. The decay rate between any two Zeeman sub-levels was 
calculated by using the fact that it is proportional to the square of the matrix element of the 
corresponding transition, and that the sum of all such decays rates from the decaying level 
must equal the net decay from that level. For example, consider mF = 0, F’ = 2 sub-level 
which decays at a rate γa. The transition strengths for the σ+, σ-, and π-transitions to the F = 2 
(F = 1) are in the ratio √3:√3:0 (1:1:2). Thus, the net decay rate between the mF = 0, F’ = 2 
sub-level to the mF = −1, + 1 and 0 states of the F = 2 level were computed to be γa/4, γa/4 and 
0 respectively and the decay to the F = 1 level was computed to be γa/2, since all the hyperfine 
levels in the F = 1 state are lumped together as a single state in our model. We have also 
considered the sourcing of atoms into the ground states from the 6S1/2 manifold via the 5P3/2 
state. A detailed calculation, taking into account the various branching ratios into and from all 
the hyperfine levels of the 5P3/2 state was used to determine these “effective decay rates” 
directly from the 6S1/2 states to the ground states. Table 1 shows these “effective decay rates” 
from each of the Zeeman sub-levels in the 6S1/2 manifold to the ground states. The ratio 
between the rates of decay into the 5P1/2 and 5P3/2 states from a given upper level was decided 
by the ratio of the explicit values of the transition strength of the D1 and D2 lines. 
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Table 1. Effective Decay rates between excited states and ground states 

 F” = 2 F” = 1 

 mF -2 -1 0 1 2 -1 0 1 

 -2 0.68852 0.19426 0.05055 0 0 0.2361 0.09722 0 

 -1 0.19426 0.47296 0.190277 0.07583 0 0.1667 0.11805 0.04861 

F = 2 0 0.05055 0.190277 0.45166 0.190277 0.05055 0.104167 0.125 0.104167 

 1 0 0.07583 0.190277 0.47296 0.19426 0.04861 0.11805 0.1667 

 2 0 0 0.05055 0.19426 0.68852 0 0.09722 0.2361 

 -1 0.04722 0.03333 0.02083 0.009722 0 0.21296 0.1226875 0.1088 

F = 1 0 0.01944 0.023611 0.025 0.023611 0.01944 0.1226875 0.199 0.1226875 

 1 0 0.009722 0.02083 0.03333 0.04722 0.1088 0.1226875 0.21296 

 
It should be noted that in our model we have not taken into account the fact that the atoms 

spend a finite amount of time in the laser beam, which is the transit time effect. Given the size 
of the beam diameter (about 0.05 mm in the focused spot), the transit time for the atoms with 
a mean velocity of ~350 m/s is about 140 nanoseconds, corresponding to a transit time 
broadening of about 1 MHz. The transit time is thus much larger than the time needed for the 
system to reach steady state, which is of the order of the radiative decay times (~30 nsec) of 
the excited states. It is, therefore, reasonable to use a steady state solution, without taking into 
account the transit time effect. The effect of the transit time broadening can be taken into 
account by increasing the natural linewidth (~6 MHz) via addition of the transit time 
linewidth (~1 MHz) to it. However, given that this broadening would change the linewidth by 
less than 20%, this is not likely to have a significant effect on the results. An elaborate model 
for a laser excitation of an atomic transition in a vapor cell where the effect of the transit time 
is taken into account via rate equations can be found in [36] and [37]. In the near future, we 
will carry out a more comprehensive analysis of our system by applying this formalism. 

We used the Liouville equation, which describes the evolution of the density matrix in 
terms of a commutator between the density matrix and the Hamiltonian augmented by the 
phenomenological determined decay rates, to obtain the steady-state solution. The usual 
method of vectorizing the density matrix and then inverting the coefficient matrix thus 
obtained, is not easy to handle as the size of the coefficient matrix is very large (400*400). In 
order to overcome this problem, we made use of a novel algorithm, recently developed by us 
[38] which would compute the said coefficient matrix automatically in a very efficient 
manner, given the Hamiltonian and the source matrix. While averaging over the Doppler 
profile, we used the supercomputing cluster at Northwestern (QUEST) to perform our 
computations. Using 64 cores and computing the steady state solution for 512 values of 
detuning, each averaged over 800 points of the Doppler profile, we obtained the steady-state 
solution for our 22-level system in 3-4 minutes. 

4. Experimental set-up 

We investigated the system when the pump and the probe are both co-propagating and 
counter-propagating. The experimental configuration for the co-propagating geometry is 
illustrated schematically in Fig. 4. Briefly, beams from two tunable lasers (one at 795 nm, and 
the other at 1323 nm) are combined with a dichroic mirror (DCM). A part of the 795 light is 
sent to a reference vapor cell for saturated absorption spectroscopy and locking. The 
combined beams are sent through a vapor cell, shielded from magnetic fields with μ-metal. 
The cell is heated using bifiliarly wounded wires that do not add any magnetic fields. After 
passing through the cell, the two beams are separated using another DCM, and each 
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frequency is measured with a separate detector. The set-up for the counter-propagating 
version is similar (not shown). The control beam at 795 nm, which is polarized linearly 
initially, is passed through either a quarter-wave-plate or a half-wave plate in order to produce 
the desired polarization. The polarization of the signal beam, at 1323 nm, is controlled 
separately with a half-wave-plate. Ideally, the 1323 nm laser would also be locked at a 
particular frequency but this laser was found to be stable, so that locking it was not necessary. 

 

Fig. 4. Experimental set-up. 

In order to determine the polarization of the signal beam after passing through the cell, we 
inserted an analyzer before detector A, consisting of a voltage-controlled liquid crystal 
retarder (LCR), whose fast axis is placed at 45 degrees to the initial polarization direction (say 
ŷ ) of the signal beam, followed by a polarizer with its axis orthogonal to initial polarization 

of the signal beam. Having only an orthogonal polarizer at the output is, in general, not 
enough, as one cannot determine if the observed signal is a manifestation of polarization 
rotation alone or a combination of both rotation and absorption, unless of course the detector 
signal is at least as large as the far off-resonant signal. However, it can serve as a diagnostic 
tool in identifying the regions of large phase shift as the probe is scanned across the 6S1/2 
manifold. The LCR produces a phase retardance between its orthogonal axes that depends 
non-linearly on the amount of voltage applied to the LCR controller which can be determined 
from a calibration curve provided by the manufacturer and verified independently by us. 
During our experiment, the control voltage to the LCR is scanned linearly from 0 V to 10 V, 
with 2 V and 8V corresponding to a phase shifts of approximately π and 0, respectively for 
the wavelength that we are using. This particular arrangement of the analyzer provides us 
with a very large set of data points (corresponding to the LCR scan) from which to obtain the 
values of absorption coefficients and the phase rotation. The signal observed at the detector A 
can be ascertained by performing a Jones matrix analysis of the entire system, which is 
discussed next. 

5. Jones matrix analysis 

Let Ein be the signal field amplitude before the Rb cell and let ŷ  be its polarization direction. 

We assume the direction of propagation of the probe to be the quantization direction. Let 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ/ 2  and / 2x iy x iyσ σ+ −= − + = −  be the unit vectors corresponding to right 

(RCP) and left circular polarizations (LCP) respectively. Then, Ein can be represented in the 

circular polarization basis as 0 ˆ ˆ ˆin in inE E y E Eσ σ+ + − −= = +


, where Ein+ = Ein- = 0 / 2iE √  

and E0 is some arbitrary value. The field amplitude after the cell can be represented, in its 
most general form as 
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 ( )( ) ˆ ˆ jj
out in inE E e E e α φα φ σ σ− −+ + − +− +

+ + − −= +


 (2) 

where ( , )α ϕ+ +  and ( , )α ϕ− −  are the attenuations and phase rotations for the RCP and LCP 

part of the signal beam respectively after passing through the Rb vapor cell. With x̂  and ŷ  

as the basis for the Jones vector representation and after some algebraic manipulation, we find 
that the field amplitude after the cell can be represented as 

 
( )

( )0
( )

1

2 ( 1)

d d

d d

j
j

out j

eEE i e
i e

α φ
α φ

α φ
− −

− +
− +

− +

 − +
=  − + 


 (3) 

where dα α α+ −= −  and dφ φ φ+ −= − . Thus, αd and φd represent the differential 

absorption and phase rotation between the RCP and LCP parts of the signal beam. If θ 
represents the phase retardation produced by the LCR, then the Jones matrix for the LCR is 
given by 

 
/2

/2

0

0

i

LCR i

e
J

e

θ

θ−

 
=  
 

 (4) 

and the Jones matrix for the LCR whose axis is rotated by 45° is given by JLCR45 = 
R−1(45°)*JLCR*R(45°) where R(45°) represents the rotation matrix for 45° and is given by 

 ( )0 1/ 2 1/ 2
45

1/ 2 1/ 2
R

 
=  

−  
 (5) 

Finally, the polarizer with its axis parallel to the ŷ  axis has the Jones matrix representation 

 
0 0

 
0 1YPolJ  

=  
 

 (6) 

Thus, the Jones vector for the signal observed at the detector A would be 

 45 * *out YPol LCR outJ J J E=  (7) 

Performing the calculations, we find that the intensity as seen by the detector A is given by 

 ( )
2

2 220 (1  1 sin 2 cos cos )
4

d d d
d

EI e e e eα α αα θ φ θ− − − −−= + + − +  (8) 

In Fig. 5(a), I is plotted for different values of φd (in degrees) and αd = 0 as the LCR phase 
retardance θ varies from 0 (left-end) to π (center) and back to 0 (right-end). As is evident 
from the figure, the signature for increasing differential phase rotation is the upward shift of 
the minimum and downward shift of the maximum of the curve until φd = 90°, at which point 
the signal is perfectly flat. For greater values of φd, the shape of the curve gets inverted until 
φd = π. On the other hand, for non-zero values of αd and φd = 0, the minima of the curves get 
shifted inwards, the curves slope upward on either side of the minima and the central part of 
the curve is flattened out, as shown in Fig. 5(b). For non-zero values of both αd and φd, the 
interpretation is not so straight-forward and one has to use 3 data points and invert the 
expression for I to obtain their values. The algebra is somewhat involved and we present only 
the final result – 
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( ) ( ) ( )
( ) ( ) ( )

2

2 1 3 3 1 1 2 3 2 2 3 2 3 2 1 1 2

2

2 3 1 3 1 1 2 2 3 2 3 2 3 1 2 1 2

d
I C C S I I C C S I I C C S

y e
I C C S I I C C S I I C C S

α − − −

− − −

− − + − − + − −
= =

− − + − − + − −
 (9) 

 

( )2 1 2 1 1 2

1 2 2 1

1 1
( )

cos  
2 ( )d

I I y I S I S y
y y

I C I C
φ

   − + + − −   
   =

−
 (10) 

where Cj = cos (θj), Sj = sin (θj), and Sj-k = sin (θj -θk), where θj is the phase rotations produced 
for some voltage, and Ij is the corresponding intensity seen by the detector. 

 

Fig. 5. Ideal Output seen by detector for different values of a) φd with α+ = α- = 0 and b) α- 
with φd = α+ = 0. 

6. Results 

The exact shape of the 5P1/2-6S1/2 absorption lines depend critically on the control beam 
intensity and detuning, and the spread in atomic velocities (which in turn depends the 
temperature of the cell). The lineshape is further complicated by the unequal transition 
strengths and hence, varying Autler Townes splittings or light shifts. As a result, each of the 
probe resonance peaks may be split as well as shifted significantly from the nominal 
positions. In addition, the structures from one resonance may overlap with other structures 
from a neighboring resonance. As such, it is quite difficult to associate a feature observed at a 
certain detuning with a specific transition. Our model does a good job in predicting the 
lineshapes for very low pump intensities. However, for strong pump intensities, such as those 
employed experimentally, a combination of a more accurate model which addresses all non-
idealities, as well as an exact measurement of the velocity spread and the optical density 
would be needed to reproduce theoretically the lineshapes observed. In the future, efforts will 
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be made to improve the modeling in this way. Thus, for the somewhat approximate model we 
have at hand, and the qualitative estimate of the experimental parameters, it is difficult to 
predict precisely the probe detuning at which one expects to see large phase shifts in the 
experiment. Therefore, as a diagnostic tool to identify regions of high phase shift, the LCR 
was first removed. Rotation of polarization by 90°, which would enable us to use the device 
as an all-optical switch, corresponds to regions where the signal is at least as large as the 
signal with the polarizer placed parallel to the initial polarization direction of the signal beam. 
As the probe laser was scanned across the 6S1/2 manifold, the detuning of the control beam 
was varied in order to maximize the transmission through the orthogonal polarizer over the 
largest possible bandwidth. The best results were obtained when the pump and probe were 
counter-propagating and the results are shown in Fig. 6. 

 

Fig. 6. Observed experimental data showing differential phase rotation of (a) ~160° and (c) 
~180° and almost no differential absorption at certain detunings. (b) transmission through 
orthogonal polarizer as probe is scanned. 

Figure 6(b) shows the transmission through the orthogonal polarizer as the probe laser 
was scanned over ~5 GHz. The control beam was right circularly polarized and the signal 
beam was vertically polarized. The pump was placed at a detuning of about 1.2 GHz. The 
temperature of the cell was maintained around 130° Celsius and the pump power was about 
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600 mW, obtained from a Ti-Sapphire laser. The probe laser was about 1 mW, obtained from 
a fiber coupled semiconductor laser. Both beams were focused to a spot size of about 50 μm 
near the center of the Rb cell. The probe frequency scan was then stopped and with the probe 
laser fixed at a frequency corresponding to a region of high phase shift, the LCR was inserted 
at 45° to the initial polarization direction of the probe and its control voltage was scanned 
linearly from 10V to 0V and back up to 10V. The blue trace (normalized from 0 to 1) 
corresponds to the situation when the control beam was blocked and can thus be treated as the 
reference signal, corresponding to 0 phase retardance. When the control beam is unblocked, 
the system acts as an optically controlled waveplate and the red trace is obtained. Comparing 
with the theoretical plots, one can see that the phase shifts in Figs. 6(a) and 6(c) correspond to 
φd ~160° and φd ~180°, respectively with αd ~0. These values obtained are consistent with 
those obtained using the analytical expressions in Eqs. (9) and (10) Fig. 7 shows the result 
obtained from numerical simulations using the model presented in section 2. We perform our 
calculations by setting Γa to unity and rescaling all parameters in units of Γa. The pump is 

resonant with the F = 1 to F’ = 2 transition and the probe detuning (δs) ranges from −1200 aΓ  

to 1200 aΓ . Figures 7(a) and 7(b) show the phase shift of the RCP and LCP parts of the 

signal beam introduced by the Rb medium and Fig. 7(c) shows the difference between them. 
Figures 7(d)-7(f) show the corresponding figures for attenuation. The pump detuning is ~1.2 
GHz (same as the experimental value), the Rb density is 1012/cm3 and the cell length is 7.5 
cm. Other relevant parameters used for this particular simulation are as follows- the decay 
rates Γa, Γb and Γg are 2π*5.75 sec−1, 2π*3.45 sec−1 and 2π*0.1 sec−1 respectively. The 

separation Δ, between F’ = 1 and F’ = 2 is 2π*814.5 sec−1 ( 141.4 a= Γ  and the Rabi 

frequencies have been chosen to be 100p a= ΓΩ , and 0.1s a= ΓΩ . As is evident from 

Figs. 7(c) and 7(f), around the data point indicated in the figure, for this set of parameters, we 
can produce a phase shift of about 180° with minimal differential absorption. For reasons 
explained earlier, it is not currently possible to ascertain whether the corresponding 180° 
phase shift observed experimentally occurs at precisely this frequency. 

 

Fig. 7. Numerical simulation of 15-level system showing phase shift and attenuation of the 
RCP and LCP parts of the probe beam as a function of probe detuning. Here δc~1.2 GHz, 
natom~1012/cm3 and Ωmin = 100Γa. 
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The expressions used to calculate the attenuation and additional phase retardance 
introduced by the Rb medium are given by 

 ( )13,4 13,4 14,5 14,5 12,7 12,7 13,8 13,8 14,9 14,9ρ ρ ρ ρ ρ
2

kL Re a a a a aβφ +
+ = + + + + (11) 

 ( )12,5 12,5 13,6 13,6 12,9 12,9 13,10 13,10 14,11 14,11ρ ρ ρ ρ ρ
2

kL Re a a a a aβφ −
− = + + + + (12) 

 ( )13,4 13,4 14,5 14,5 12,7 12,7 13,8 13,8 14,9 14,9 ρ ρ ρ ρ ρ / 2kL Im a a a a aα β+ += + + + + (13) 

 ( )12,5 12,5 13,6 13,6 12,9 12,9 13,10 13,10 14,11 14,11 ρ ρ ρ ρ ρ / 2kL Im a a a a aα β− −= + + + + (14) 

And 

 
3

2
2

3

4
atom

min
min

n Γb
Ω

λβ
π± =  (15) 

where k  is the wavevector of the signal beam, L is the length of the cell, natom is the density 

of Rb atoms, minΩ  is the Rabi frequency for the weakest probe transition and the various aij’s 

are the ratios of the Rabi frequency ( ijΩ ) of the |i>-|j> transition to minΩ  For example, 

2
12,7 12,7 14,9 min/ 6.a Ω Ω b= =   is the fraction of the atoms (<1) that decay along the 

transition corresponding to minΩ , among all allowed decay channels from the decaying level. 

In our model, the amplitudes for all possible transitions from |14> are in the ratio 

1:1:1: 3 : 6  and hence the fraction of atoms that decay along the different channels are in 

the ratio 1:1:1:3:6. Thus, 2 1/ (1 1 1 3 6) 1/12minb = + + + + = . 

It is possible to produce arbitrarily large phase rotation by increasing the temperature and 
thus the density of Rb atoms. However, since the difference in phase rotation is so large, the 
bandwidth over which the device can operate as a half-wave plate, for example, becomes 
narrower. Thus, for wide bandwidth operation, we would need to operate in the parameter 
space where we not only have φd ~180°, but the slope should also be very small, as shown for 
the data point marked in Fig. 7(c). We also investigated the waveplate effect under a co-
propagating geometry. We found that the absorption line shapes for the co-propagating 
geometry are broader and shallower compared to the counter-propagating geometry, the 
reasons for which have been clearly elucidated in [9]. As a consequence, under identical 
conditions, the phase rotation produced is smaller. This was confirmed experimentally, but 
the results have been omitted for the sake of brevity. 

The system can also be used as a quarter-wave plate by using a pump that is linearly 
polarized at 45° to the direction of polarization of a linearly polarized probe, as explained 
earlier. Figure 8(a) shows the result for such a situation with the polarizer in front of detector 
A parallel to the direction of polarization of the probe. Here, the probe is vertically polarized 
while the pump is linearly polarized at 45° and is at a detuning of δc~1 GHz and has a power 
of ~600 mW. Figure 8(b) shows the corresponding simulation results for a vertical and 
circularly polarized probe after passing through our analyzing system. 
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Fig. 8. System behaving as Quarter Wave Plate using pump which is linearly polarized at 45° 
(a) Experimental result (b) Expected detector output for linear and circular polarization of the 
probe 

7. Future work 

In a closely related experiment, we have also demonstrated an optically controlled polarizer, 
where a control laser at 795 nm is used to realize a polarizer for the signal beam at 1323 nm. 
Once the optically controlled waveplate and polarizer are combined in the same cell, it should 
be possible to demonstrate a Quantum Zeno Effect (QZE) based all optical logic gate [9]. 
Such a gate, realized with a TNF embedded in vapor cell, is expected to require pump power 
as low as a few nanowatts and thus has potential applications in quantum information 
processing. In a TNF, the typical mode area is ~0.2 μm2 [7, 8]. Thus, assuming a saturation 
intensity of 3mW/cm2, a Rabi frequency of 10γa would correspond to a power of only ~1 nW. 
Unlike the free space case, the maximum speed of operation in the TNF system would be 
limited by the transit time broadening (~60 MHz) rather than the natural linewidth of the 5P 
manifold (~3 MHz). To see why, note that the speed is limited by the rate at which atoms in 
the intermediate state relax to the ground state [6] and for a TNF system, this rate is 
effectively determined by the transit time. A more thorough investigation is needed to identify 
the parameter space for optimum operation of both the polarizer and waveplate effect 
simultaneously. We have indicated some of the ways to improve the performance of the 
optically controlled polarizer [9]. Significant changes to the set-up are required in order to 
implement the improved scheme both in free space and in the TNF system. Efforts are 
underway in our laboratory towards making these modifications and we intend to report on 
the progress and results in the near future. 

8. Conclusions 

To summarize, we have demonstrated an optically controlled waveplate at ~1323 nm using a 
ladder transition in a Rb vapor cell. We are able to place the signal beam in any desired 
polarization state by controlling the power, detuning and polarization of the control beam. 
The process for producing controlled polarization rotation is explained in terms of the 
selection rules for the Zeeman sublevels. The waveplate has applications in Stokesmetric 
Imaging and optical switching. Using a comprehensive model which incorporates all the 
relevant Zeeman sub-levels in the system, we identify the parameters for optimal 
performance. A novel algorithm to compute the evolution of large scale quantum system 
enabled us to perform this computation. When combined with an optically controlled 
polarizer, recently demonstrated by us, and using a tapered nanofiber system, such a 
waveplate can be used to realize a Quantum Zeno Effect based ultra-low power, all-optical 
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logic gate for the telecom band. We have also discussed some issues related to 
implementation in the TNF system. 
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