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Abstract. Use of a double-Raman pump applied to a three-level system is a convenient method for generating
negative dispersion. When the gain at the center is high enough, such a system can be used to realize a super-
luminal laser, which in turn can be used to enhance the sensitivity of rotation sensors. For this condition, it is often
necessary to apply strong pumps that are closely spaced in frequency. Accurate modeling of this system thus
requires taking into account interference between the two pumps. We present such an analysis where we allow
for an arbitrary number of harmonics that result from this interference, and investigate the behavior of the gain
profile under a wide range of conditions. We also describe an experimental study of double-Raman gain in a Rb
vapor cell, and find close agreement between the experimental result and the theoretical model. The technique
reported here can be used in developing a quantitative model of a superluminal laser under wide-ranging con-
ditions. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.54.5.057106]
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1 Introduction
Recently, we have been investigating the development of
a superluminal ring laser (SRL).1–9 Briefly, an SRL is a laser
where the group velocity of light far exceeds the vacuum
speed of light without violating causality or relativity.10,11

It is the active version of the white light cavity.12–16 The spec-
tral sensitivity of laser, defined as the change in frequency as
a function of a change in the cavity length, is enhanced by a
factor ξ, that can be as high as 105 for experimentally real-
izable parameters.1 It is also important to take into account
another factor, η, defined as the ratio of the quantum noise
limited linewidth of an SRL to that of a conventional laser
with similar operating parameters, such as mirror reflectivity,
cavity length, and output power. The effective enhancement
in sensitivity, defined as the minimum measurable change in
the cavity length (for application to a range of devices,
including gyroscopes, accelerometers, magnetometers, and
gravitational wave detectors1,2,5,9), is expected to be (ξ∕η).
It has been suggested previously, with some qualitative argu-
ments,1,2 that the value of η may be of the order of unity.
Some investigations17,18 have been undertaken to understand
the behavior of passive cavities containing dispersive media,
in order to shed light on what the value of η might actually
be. However, to date, a definitive determination of the value
of η remains elusive, both theoretically and experimentally.
Physical realization of an SRL is necessary to establish the
value of η, thereby determining the extent to which an SRL
may enhance sensitivity in metrology.

In an SRL, the enhancement in spectral sensitivity results
from the presence of a properly tuned negative dispersion.
Broadly speaking, the negative dispersion is achieved by
introducing an effective dip in the spectral profile of the

gain and operating the laser at the center of this dip.
There are many potential ways to realize an SRL, including
the use of coupled cavities,6,7,8,19 dual frequency pumped
Brillouin gain,20 or use of an auxiliary cell inside a diode
pumped alkali laser system to produce Raman induced
absorption. Yet another approach is to make use of a dual-
pumped Raman gain system in atomic vapor,4,10 which
has many potential advantages over the other proposed
approaches.

Briefly, the dual pumped Raman gain makes use of a
Λ-type transition, easily realizable in an alkali vapor, such
as Rubidium. In such a system, an optical pumping beam
is employed to create a population imbalance between the
two low-lying, metastable states of the Λ system. When
an optically detuned pump is applied on the leg that couples
the lower level with the higher population to the intermediate
level, a probe on the other leg experiences a narrow-band
Raman gain with a width of γ, centered at the two-photon
resonant frequency of the probe. When another pump is
added on the same leg as that of the first pump but is detuned
by some frequency Δ, the probe experiences two different
gain peaks, separated by Δ. If the value of Δ is chosen to
be less than γ, the effective gain profile has a dip in the over-
all gain profile, which is what is needed for an SRL. A cavity
tuned to be resonant at the center of the two Raman gain
peaks will thus become an SRL with the proper choice of
parameters.

A potential complication in this approach is that when
Δ < γ, there is interference between the two Raman gain
processes, especially when the pumps are made to be strong
in order to produce a large gain at the center. Under such
a condition, the total gain profile cannot be expressed as
a simple sum of the two individual gain profiles.
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In this paper, we present a detailed theoretical calculation
to predict the exact shape of the gain profile under arbitrary
conditions. Since two different frequencies are present on a
given transition, the rotating wave transformation21,22 cannot
be used to realize a time independent Hamiltonian. As such,
it is necessary to use a perturbative technique whereby the
density matrix is expanded to include n harmonies of Δ,
where n is chosen to be large enough to produce a converg-
ing result. We show numerical result for up to n ¼ 7, and
find that the gain profile has additional peaks beyond the
two expected from the simple model. We also find that,
in general, the strengths of the two pumps have to be unequal
in order to produce a condition where the two strongest gain
peaks become equal. We also present experimental results,
obtained with a cell of 85Rb atoms, and show close agree-
ment with the theoretical model.

The rest of the paper is organized as follows. In Sec. 2, we
first introduce the double-Raman gain model for the three-
level Λ system. We then develop the equations of motion for
the elements of the density matrix expanded to an arbitrary
number of harmonics of the beat frequency between the two
pump beams. We present the steady state solutions of these
equations for a wide range of conditions. In Sec. 3, we add
velocity averaging into our model, and consider situations
where the probe is copropagating or counter-propagating
with respect to the pumps. In Sec. 4, we present the details
of our experimental realization of a double-Raman gain sys-
tem, and compare the simulation result with experimental
data. We conclude in Sec. 5 with a summary of the paper.

2 Double-Raman Gain System
The basic system we consider for producing the double-
Raman gain peaks is illustrated schematically in Fig. 1.
Here, level j1i and j2i are assumed to be long-lived ground
states, each coupled via electric dipolar transitions to the
intermediate states j3i and j4i, which are assumed to be
far apart in energy. Since the energy difference between
j1i and j2i is much less than the thermal energy, (kBT,
where kB is the Boltzmann constant and T is the temperature)
at room temperature, the population in these two levels are
roughly equal under thermal equilibrium. An optical pump-
ing beam, locked to the j1i → j4i transition, is tuned to
create a population imbalance between these two states. The

effect of this pump is modeled as a net decay rate of Γ12 from
state j1i to state j2i. (Decaying from j4i → j2i is implicitly
included here.) The Raman pumps with frequencies ωp1 and
ωp2, respectively, are applied to the j2i → j3i transition,
each being highly detuned in order to avoid the effect of
spontaneous emission. The Rabi frequencies of these two
pumps are Ωp1 and Ωp2, respectively. The probe beam, at
frequency ωs, is applied to the j1i → j3i transition, also
highly detuned. We indicate by ℏωj the energy of the
state jji, for j ¼ ð1; 2; 3Þ. Δp is defined as the detuning
of the central frequency of the two Raman pump fields,
i.e., Δp ¼ ðωp1 þ ωp2Þ∕2 − ðω3 − ω2Þ. The frequency dif-
ference between the two Raman pumps is Δ ≡ ωp2 − ωp1.
The detuning of the probe beam is δ ¼ ωs − ðω3 − ω1Þ.
When δ ¼ Δp � Δ∕2, a two-photon transition condition is
met. In that case, the Raman probe will experience a gain.
In the experiment to be described later, we implemented
the Λ system with a 85Rb D1 line, with j1i, j2i, and j3i cor-
responding to the 5S1∕2 F ¼ 2, 5S1∕2 F ¼ 3, and 5P1∕2,
respectively, and the D2 transition is used for optical pump-
ing (i.e., j4i is the 5P3∕2 manifold).

Under the electric dipole and rotating wave approxima-
tion, the Hamiltonian for the system shown in Fig. 1 can be
expressed on the basis of j1i, j2i, and j3i, as:

H ¼ ℏ

2
664

ω1 0 1
2
eiωstΩs

0 ω2

�
1
2
eiωp1tΩp1 þ 1

2
eiωp2tΩp2

�
1
2
e−iωstΩs

�
1
2
e−iωp1tΩp1 þ 1

2
e−iωp2tΩp2

�
ω3

3
775: (1)

Here, without loss of generality, we have assumed that
the phase of each of the three fields is zero. The gain expe-
rienced by the probe is not affected by the relative phases of
these fields, since there is no closed loop involved in the
interaction.23

As can be seen, the term in the Hamiltonian that repre-
sents the coupling between j2i and j3i contains two different
oscillatory terms. As such, there is no transformation that
can convert this into a fully time-independent form. Thus,
we choose arbitrarily to carry out a transformation that
eliminates the time dependence for only one of the terms.

Specifically, the state vector jψi; is transformed to
jψ̃ ≡Qjψi, where Q ≡ eiθ1tj1ih1j þ eiθ2tj2ih2j þ eiθ3tj3ih3j,
and choose θ1 ¼ −ω1, θ2 ¼ −δ − ðΔ∕2Þ þ Δp − ω2, and
θ3 ¼ −δ − ω3. The effective Hamiltonian for jψ̃i is then
given by Ref. 23:

H̃ ¼ ℏ

2
64
0 0 Ωs

2

0 − 1
2
ð2δþ Δ − 2ΔpÞ 1

2
ðΩp1 þ eiΔtΩp2Þ

Ωs
2

1
2
ðΩp1 þ e−iΔtΩp2Þ −δ

3
75:

(2)

Fig. 1 The double-Raman gain system. Ωs is the Rabi frequency of
the Raman probe.Ωp1 andΩp2 are Rabi frequencies of Raman pumps
1 and 2, respectively. Γ41 and Γ42 are the decay rates from j4i to j1i
and j2i, respectively.
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The Liouville’s equation for the density matrix in this
basis can be written as:

dρ̃
dt

¼ −
i
ℏ
ð ˜̃H ρ̃−ρ̃ ˜̃H

†Þ þMsource; (3)

where ˜̃H is a non-Hermitian Hamiltonian introduced for
convenience,23 and is given by:

˜̃H ¼ H̃ − i
ℏ
2
ðΓ1j1̃ih1̃j þ Γ2j2̃ih2̃j þ Γ3j3̃ih3̃jÞ; (4)

and Msource accounts for the influx of population into the
three states, which is expressed as:

Msource ¼ ðΓ21ρ̃22 þ Γ31ρ̃33Þj1̃ih1̃j þ ðΓ12ρ̃11 þ Γ32ρ̃33Þj2̃ih2̃j
þ ðΓ13ρ̃11þ Γ23ρ̃22Þj3̃ih3̃j: (5)

Here, Γi ði ¼ 1; 2; 3Þ is the net decay rate of state jĩi,
Γij ði; j ¼ 1; 2; 3Þ is the decay rate from level jĩi; to level
jj̃i, and ρ̃ij ≡ hĩjρ̃jj̃i. In formulating Eq. (5), we have
assumed a closed system, i.e., ρ̃11 þ ρ̃22 þ ρ̃33 ¼ 1.

In general, all the decay rates in Eqs. (4) and (5) could be
nonvanishing. However, for one particular system of inher-
ence, we make the following assumptions about these rates.
Γ3 ð¼ 2π × 6 × 106 sec−1Þ is the radiation decay rate from
level j3i, and we assume Γ31 ¼ Γ32 ¼ Γ3 ∕2. We also
assume that Γ13 ¼ Γ23 ¼ 0. In the absence of optical pump-
ing, Γ1 ¼ Γ12 and Γ2 ¼ Γ21 would account for the collisional
exchange of populations between j1̃i and j2̃i, with Γ1 ≅ Γ2

(of the order of a few kHz) since the population of states j1̃i
and j2̃i are roughly equal in thermal equilibrium at the oper-
ating temperature. However, the effect of the optical pump-
ing via state j4i produced a net decay rate from j1̃i to j2̃i;
that is much stronger than these collisional ratios. Thus, we
assume that Γ2 ¼ Γ21 ¼ 0 and Γ1 ¼ Γ12 ≡ Γop, where Γop is
the rate of optical pumping.

Since some of the coupling terms in the Liouville equa-
tion have a periodicity of (2π∕Δ), the general solution of the
density matrix is an infinite sum which includes stationary
components plus all the harmonies (positiveþ negative)
of Δ

ρ̃ ¼ ρ̃0 þ
X∞
n¼1

ðρ̃−ne−inΔt þ ρ̃neinΔtÞ: (6)

A characteristic parameter for the strength of the contri-
bution of the n’th order is Kn, defined as the sum of the
absolute values of all the elements

Kn ≡
X3
i¼1

X3
j¼1

fjρ̃nijj þ jρ̃−nij jg: (7)

In general,Kn for a given nwould increase monotonically
with increasing pump Rabi frequencies. Furthermore, for a
fixed set of parameters, Kn would decrease monotonically
with increasing n. These patterns can be used as a guide
in deciding the maximum value of n to keep in the summa-
tion of Eq. (6). Specifically, we will use the convention that

ρ̃ ¼ ρ̃0 þ
XM
n¼1

ðρ̃−ne−inΔt þ ρ̃neinΔtÞ; KM < ε; (8)

where ε can be chosen to have a value that is sufficient for
the required accuracy. We will use a value of ε ¼ 0.01 in
the results presented here.

It should be noted that Eq. (8) represents a relation for
each element of the density matrix

ρ̃ij ¼ ρ̃0ij þ
XM
n¼1

ðρ̃−nij e−inΔt þ ρ̃nije
inΔtÞ;

i ¼ f1; 2; 3g; j ¼ f1; 2; 3g; KM < ε: (9)

The Liouville equation [Eq. (3)], when applied to the den-
sity matrix of Eq. (8) [or equivalently Eq. (9)], represents
a set of coupled differential equations involving 9 variables
ρ̃ij subject to the closed system constraints that ρ̃11 þ
ρ̃22 þ ρ̃33 ¼ 1. If we represent the 9 variables as a vector

A
⇀

(with the elements ordered in any chosen way), then the

Liousville equation can be expressed as dA
⇀

dt
¼ MA

⇀
, where the

matrix M is time dependent. As such, this system does not
have a steady state solution, even when the closed system
constraint is used.

In principle, one can determine the time evolution of A
⇀
via

simple numerical integration. However, we are interested in
the limit where the system reaches a quasi steady state where
the time evolution involves only the harmonics of Δ. In this
limit, for all i, j, and n ≤ M, the elements ρ̃0ij and ρ̃�n

ij
become constants. We can then equate terms with the same
temporal coefficients in order to derive the values of these
elements.

To illustrate this process explicitly, consider, for example,
the case of M ¼ 1, and focus arbitrarily on ρ̃12. The
Liousville equation implies that:

dρ̃12
dt

¼ −
1

2
Γ1ρ̃12 −

1

2
Γ2ρ̃12 − iδρ̃12 −

i
2
Δρ̃12 þ iΔpρ̃12

þ i
2
ρ̃13Ωp1 þ

i
2
e−itΔρ̃13Ωp2 −

i
2
ρ̃32Ωs; (10)

where ρ̃12 ¼ ρ̃012 þ ρ̃112e
iΔt þ ρ̃−112 e

−iΔt. In a quasi steady
state, ρ̃012, ρ̃112, and ρ̃−112 are constants. As such, the left
hand side (LHS.) of Eq. (10) becomes

dρ̃12
dt

¼ 0þ iΔρ̃112eiΔt − iΔρ̃−112 e−iΔt: (11)

On the right hand side (RHS), we use the relation that
ρ̃ij ¼ ρ̃0ij þ ρ̃1ije

iΔt þ ρ̃−1ij e
−iΔt. Furthermore, we use the

closed-system constraint that ρ̃11 þ ρ̃22 þ ρ̃33 ¼ 1 in order
to eliminate ρ̃33 everywhere. Now, equating the constant
terms between the LHS and RHS, we get:

0 ¼ −
1

2
ðρ̃012Γ1Þ − iρ̃012δþ iΔpρ̃

0
12 þ

i
2
Ωp1ρ̃

0
13

þ i
2
Ωp2ρ̃

1
13 −

1

2
ρ̃012Γ2 −

i
2
Δρ̃012 −

i
2
ρ̃032Ωs: (12)

Similarly, equating the coefficients of the eiΔt terms we
get:
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iΔρ̃112 ¼ −
1

2
ðρ̃112Γ1Þ − iδρ̃112 þ iΔpρ̃

1
12 þ

i
2
Ωp1ρ̃

1
13

−
1

2
Γ2ρ̃

1
12 −

i
2
Δρ̃112 −

i
2
Ωsρ̃

1
32; (13)

and by equating the coefficients of the e−iΔt terms we get:

− iΔρ̃−112 ¼ −
1

2
ðρ̃−112 Γ1Þ − iδρ̃−112 þ iΔpρ̃

−1
12 þ i

2
ρ̃−113Ωp1

þ i
2
Ωp2ρ̃

0
13 −

1

2
Γ2ρ̃

−1
12 −

i
2
Δρ̃−112 −

i
2
ρ̃−132Ωs:

(14)

The same process can be used to generate these questions
corresponding to each element, ρ̃ij of the density matrix.
However, because of the closed system constraint, the equa-
tions resulting from ρ̃33 are redundant. As such, we get 24
different equations, which can be easily solved via simple
matrix inversion. For a general value ofM, we set 8 × ð2M þ
1Þ different equations, which can be solved in the same
manner.

The solution of the density matrix is then used to deter-
mine the gain and dispersion experienced by the probe
beam. To do so, we note first that the probe field can be
expressed as:

E
⇀

signal ¼ ϵ̂E0 cosðkz − ωstÞ; (15)

where the polarization, ϵ̂, is chosen to be orthogonal to that
of the pump, due to the selection rules for the Raman tran-
sition we have employed experimentally. The polarization
density at the frequency of the probe can be expressed as
(at z ¼ 0, for simplicity, without loss of generality):

P
⇀

sðz¼0Þ ¼ ϵ0χE
⇀

ðz¼0Þ ¼
1

2
ϵ̂ϵ0χE0ðeiωst þ e−iωstÞ: (16)

The total polarization density is given by

P
⇀

total ¼ −Njejhr⇀i; (17)

where N is the density of the atoms, jej is the electron charge
(assuming that a single electron is responsible for the inter-
action, which is valid for alkali atoms), and r

⇀
is the position

of the electron with respect to the nucleus of the atom.
The polarization density responsible for the electric sus-

ceptibility of the probe, given in Eq. (16), is the component at
frequency ωs of the following quantity:

P
⇀

ϵ ¼ −Njejhrϵiϵ̂; rϵ ¼ r
⇀ ⋅ ϵ̂: (18)

We assume that h1jrϵj3i ¼ h3jrϵj1i ≡ r13, h2jrϵj3i ¼
h3jrϵj2i ≡ r23, and h1jrϵj2i ¼ h2jrϵj1i ≡ 0. The value of
hrϵi is then given by

hrϵi ¼ trðρrϵÞ ¼ r13ðρ13 þ ρ31Þ þ r23ðρ23 þ ρ32Þ: (19)

For our system, ρ23 and ρ32 correspond to oscillation that
are at frequencies far away from ωs. As such, only ρ13 and
ρ31 will contribute to the polarization density in Eq. (16).
In the presence of dual Raman pumps, ρ13 and ρ31 will have

components at ωs, as well as at ωs � nΔ. However, only
the components of ρ13 and ρ31 at ωs will contribute to the
polarization density of Eq. (16). Explicitly, we note that

ρ13 ¼ ρ̃13e−iωst

¼ ρ̃013e
−iωst þ

XM
n¼1

½ρ̃−n13 e−iðωs−nΔÞt þ ρ̃n13e
−iðωsþnΔÞt�;

(20)

ρ31 ¼ ρ̃31eiωst

¼ ρ̃031e
iωst þ

XM
n¼1

½ρ̃−n31 e−iðωs−nΔÞt þ ρ̃n31e
−iðωsþnΔÞt�: (21)

Thus, the parameter χ in Eq. (16) can be expressed as:

χ ¼ −
2r13ρ̃013
ε0E0

Njej: (22)

Noting that Ωs ≡ jejr13E0∕ℏ, we get

χ ¼ 2NℏΩs

ε0E2
0

ρ̃013: (23)

The gain experienced by the probe can be expressed as
G ¼ e−αL, where α ¼ ð1∕2Þk0 ImðχÞ and L is the length of
the media. The phase delay experienced by the probe is
Φ ¼ ð1∕2Þk0 ReðχÞL.

Before showing the response of the complete system, we
first illustrate the individual effect of each Raman pump on
the gain seen by the probe. In Fig. 2(a), we show the probe
gain in the absence of the higher frequency Raman pump.
For convenience, we have chosen N ¼ 2.5 × 1016 m−3, L ¼
0.1 m, Ωs ¼ 0.5Γ3, Γ12 ¼ 0.5Γ3, and k0¼8.06�106 m−1,
corresponding to the D2 manifold in Rb. For Ωp1 ¼ 5Γ3, we
see a peak gain of ∼1.7. As the pump strength is increased to
20Γ3, gain is increased to ∼9.8. It should be noted that the
peak is slightly shifted to the right from the two-photon res-
onant condition due to the light shift experienced by level 1.
This shift becomes more prominent for higher pump powers.
The amount of light shift agrees with the expected value of
Ω2

p1∕4δ1, where δ1 ≡ ðΔp − Δ∕2Þ is the detuning of this
pump. Figure 2(b) shows the corresponding plots in the
absence of the lower frequency Raman pump. The peak
gains observed for both cases are the same for the same
pump power, as expected.

Next, we consider the case where both pumps are present
simultaneously. A typical set of probe gain plots are shown in
Fig. 3 as a function of probe detuning. We set Δ ¼ Γ3,
Δp ¼ 200Γ3, Ωs ¼ 0.5Γ3, N ¼ 2.5 × 1016 m−3, L ¼ 0.1 m,
M ¼ 7. The figure shows the cases when Ωp1 ¼ Ωp2 ¼ Γ3,
2Γ3, 3Γ3 and 4Γ3, respectively. The gain profile shows equal
peaks when Ωp1 ¼ Ωp2 ¼ Γ3. As the Rabi frequency
becomes stronger, the second gain peak becomes larger.
The imbalance becomes more significant when Ωp are fur-
ther increased.

In Fig. 4, we set Ωp1 ¼ 5Γ3 and change the value of Ωp2,
while all the other parameters are kept the same as those in
Fig. 3. Figures 4(a)–4(d) show the cases when Ωp2 ¼ Γ3,
3Γ3, 4Γ3, 5Γ3, respectively. It should be noted that the
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peak corresponding to the second pump becomes larger
[Fig. 4(d)] than that corresponding to the first pump when
Ωp2 ¼ Ωp1. Figure 5 shows the case where all the other
parameters are the same as those in Fig. 4, but Ωp2 ¼ 5Γ3

and Ωp1 is increased from Γ3 to 5Γ3. As can be seen, the
ratio of the peaks of the two gains follows a pattern that
is similar to those in Fig. 4.

We have also verified that this imbalance is reproduced
when pumps are detuned below resonance. Specifically,
the pump that is further detuned from state j3i is more
efficient in producing gain. Obviously, the exact nature of
this imbalance depends on the choice of parameters, such as
the difference detuning Δ, the mean detuning Δp, and the
absolute strengths of the pumps. This rather surprising result
is due to the complicated interplay between the various
higher order terms. It shows that the simple model generally
used6 for double-Raman gain, where the gain spectrum is
expressed simply as the sum of two independent Lorentzians,
is invalid. Rather, the more comprehensive model presented
here must be used in determining the actual gain spectrum.

Next, we compare the results obtained by the double-
Raman code with those produced by the single Raman
pump model, which does not require expansion into many
orders since the Hamiltonian after the Q transformation
becomes time independent. The first comparison we made
is to compare the single Raman result with the double-
Raman result by setting one Raman pump Rabi frequency
to be zero. This is illustrated in Fig. 6, where we plot
both the probe gain and the phase delay as a function of
the probe frequency. Figure 6(a) shows the result of the
single Raman model. We set Ωp ¼ 20Γ3, Δp ¼ 199Γ3,
Γ12 ¼ 0.5Γ3, Ωs ¼ 0.5Γ3, L ¼ 0.1 m, and N ¼ 2.5 ×
1016 m−3. Figure 6(b) shows the result of the single Raman
model by setting Δp ¼ 201Γ3 while keeping all the other
parameters the same. Figure 6(c) shows the result of the

Fig. 2 Illustration of individual Raman gain profiles and effects of light shift: (a) the higher frequency
Raman pump is turned off and (b) the lower frequency Raman pump is turned off. The location of
the gain peaks moves with increasing pump power due to light shift (or the ac-Stark shift). The reference
line in both plots indicates the positions where the gain peak should be without considering light shift.
See text for additional details.

Fig. 3 Illustration of the changes in the Raman gain profile while the
pump Rabi frequencies, kept equal to each other, are increased.

Fig. 4 Illustration of the changes in the gain profile when the second
Raman pump Rabi frequency is increased, while keeping the first
Raman pump Rabi frequency fixed. Plots (a), (b), (c) and (d) corre-
spond to the cases of Ωp2∕Γ3 ¼ 1; 3; 4 and5 respectively, with
Ωp1∕Γ3 ¼ 5 in each case.
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double-Raman model by setting Ωp1 ¼ 20Γ3, Ωp2 ¼ 0,
Δp ¼ 200Γ3, Δ ¼ 2Γ3 (recall that the two photon transition
happens when δ ¼ Δp � Δ∕2), and keeping all the other
parameters the same as Fig. 6(a). Figure 6(d) shows the result
of the double-Raman model by setting Ωp1 ¼ 0, Ωp2 ¼
20Γ3, and keeping all the other parameters the same as
Fig. 6(b). The figures demonstrate that the single Raman
code and double-Raman code return the same result when

one of the Raman pump Rabi frequencies is set to be zero
in the double-Raman code.

We also considered the limiting case where Δ → 0, and
compared the result with those obtained using the single
Raman model. As Δ → 0, Eq. (23) is no longer valid. All
the harmonics and zero order terms are at the same fre-
quency. In this case, we set χ ¼ ð2NℏΩs∕ϵ0E2

0Þ½ρ̃013 þP
M
n¼1ðρ̃−n13 e−inΔt þ ρ̃n13e

inΔtÞ� . This is illustrated in Fig. 7.
In the double-Raman model, we set Ωp1 ¼ Ωp2 ¼ 20Γ3,
Ωs ¼ 0.01Γ3, Δp ¼ 110Γ3, Δ ¼ 0, Γ12 ¼ Γ3, L ¼ 0.1 m,
N ¼ 2.5 × 1016 m−3. Figures 7(a)–7(g) shows the results of
the double-Raman simulation by setting M ¼ 1, 2, 3, 6, 13,
20, and 30, respectively. Figure 7(h) shows the single Raman
case, where we keep all the other parameters the same but
set Ωp ¼ 40Γ3. Ripples are observed on the left side of
the phase delay when M is small. As the order M increases,
the ripples diminish and the double-Raman model shows
closer results compared with the single Raman model.

3 Effect of Velocity Averaging
Next, we consider the effect of velocity distribution, which is
important for realizing the double-Raman gain in a vapor
cell. We consider first the case where the two pumps as
well as the probe are propagating in the same direction.
We assume a Maxwell–Boltzmann distribution for the
velocities of the atoms. The temperature of the cell is
assumed to be 373 K. The specific atom we consider is
87Rb. The length of the cell is assumed to be 0.1 m, at a den-
sity of 5 × 1017 m−3.

Figure 8 shows the modification of the gain profile due to
the velocity averaging for Δ ¼ Γ3, Ωp1 ¼ Ωp2 ¼ 2Γ3,
Ωs ¼ 0.01Γ3, Δp ¼ 200Γ3, Γ12 ¼ 0.5Γ3, N¼5×1017 m−3,
and L ¼ 0.1, where we have used only the first order

Fig. 5 Illustration of the change in the gain profile when the first
Raman pump Rabi frequency is varied, while keeping the second
Raman pump Rabi frequency fixed. Plots (a), (b), (c) and (d) corre-
spond to the cases of Ωp1∕Γ3 ¼ 1; 3;4 and5 respectively, with
Ωp2∕Γ3 ¼ 5 in each case.

Fig. 6 Comparison between double-Raman gain model and single Raman gain model by setting one
Raman pump Rabi frequency to be zero. The plots show the gain (left axis) and the phase delay (right
axis) as a function of probe detuning δ: (a) the single Raman model with Δp ¼ 199Γ3; (b) the single
Raman model with Δp ¼ 201Γ3; (c) the double-Raman model with the second Raman pump turned
off; and (d) the double-Raman model with the first Raman pump turned off.
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expansion (M ¼ 1). Figure 8(a) shows the gain as a function
of δ∕Γ3. Figure 8(b) shows the phase delay as a function
of δ∕Γ3. As can be seen, the averaging produces only
a small reduction in the gain, in keeping with the well-
known Doppler-shift insensitivity of copropagating Raman
interaction.

Next, we consider the case where the two pumps are
copropagating, but the probe is propagating in the opposite
direction. Physically, it is expected that the efficient gain in
this case would come only for the zeros’ velocity band.
Therefore, the next gain averaged over the velocity profile
should be much smaller than that for the copropagating
case. This is indeed found to be the case, as shown in Fig. 9.

We consider next the saturation of the gain as a function
of the probe power. Such a saturation is important in deter-
mining the steady-state property of a laser based on this gain
profile. First, we consider the case where only a single
Raman pump is present. This is illustrated in Fig. 10. Here,
we have used Ωp ¼ 2Γ3, Δp ¼ 200Γ3, N ¼ 5 × 1017 m−3,
L ¼ 0.1 m, Γ12 ¼ 0.5Γ3. Figures 10(a)–10(c) show gain
decreasing as the probe Rabi frequency is increased from
Ωs ¼ 0.01Γ3 to Ωs ¼ 100Γ3. Figure 10(d) shows the peak
gain as a function of logðΩs∕Γ3Þ. The vertical line indicates
the saturation point which occurs when the Raman coupling
rate matches the optical pumping rate ΩsΩp∕ð2ΔpÞ ¼ Γ12,
which corresponds to Ωs ¼ 2Γ3.

Next, we show the gain saturation process for the case of
double-Raman pumps. Here, the gain value of most interest
for realizing a superluminal laser is the one at the center.
The results are shown in Fig. 11, where we have used

Ωp1¼Ωp2¼2Γ3, Δ ¼ Γ3, Δp ¼ 200Γ3, N¼5×1017 m−3,
L ¼ 0.1 m, M ¼ 6, and Γ12 ¼ 0.5Γ3. Figures 11(a)–11(c)
show three cases where Ωs is changed from 0.01Γ3 to
100Γ3. Figure 11(d) shows the center gain as a function
of Ωs. Again, as expected, the gain saturates when ΩsðΩp1 þ
Ωp2Þ∕ð2ΔpÞ ¼ Γ12, as indicated by the vertical line.

4 Comparison with Experimental Data
We used a room-temperature cell of 85Rb atoms to carry out
the experimental investigation of the double-Raman gain.
The transition used is illustrated schematically in Fig. 12.
As shown in Fig. 12(a), the two Raman pumps, at frequen-
cies fP1 and fP2, are tuned slightly above the 5S1∕2,
F¼3→5P1∕2 transition. The frequency difference between
these is denoted as Δ ¼ fp2 − fp1. The probe beam, at
frequency fS, is applied along the 5S1∕2, F ¼ 2 → 5P1∕2
transition. The optical pumping is tuned to the 5S1∕2,
F ¼ 2 → 5P3∕2 transition. Figure 12(b) shows the selective
position of the frequency fP1 with respect to a set of refer-
ence transitions in the D1 (∼795 nm) manifold, observed
using a cell containing a natural mixture of 87Rb and 85Rb.
Here, the A and D lines correspond to a transition in 87Rb,
the B line corresponds to the 5S1∕2, F ¼ 3 → 5P1∕2 transi-
tion and the C line corresponds to the 5S1∕2, F ¼ 2 → 5P1∕2
transition in 85Rb. As can be seen, the frequency fP1 is tuned
just above the Doppler profile of the B line.

Figure 13 schematically shows the experimental setup. A
Ti:Sapphire laser is used to generate the Raman pumps and
the Raman probe. A part of the laser output is split off with
a nonpolarizing beam splitter (NPBS1), and passed through

Fig. 7 Comparison between double-Raman gain model and single Raman gain model by setting Δ to be
zero. Plots (a)–(g) are generated by the double-Ramanmodel with order numbers of 1, 2, 3, 6, 13, 20, and
30, respectively, while plot (h) is generated by the single Raman model with the same parameters.
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a reference vapor cell (Rb Cell 1). The laser frequency was
scanned by applying a driving voltage VD ¼ VB þ VSAW,
where VB is a bias voltage, and VSAW is a sawtooth ramp
ranging from −jVmj to jVmj. The value of VB was adjusted
until the frequency of the laser at the zero-crossing point of
VSAW was found to be just above the 5S1∕2, F ¼ 3 → 5P1∕2
transition in 85Rb [as shown in Fig. 12(b)]. The sawtooth
ramp was then disconnected, thus parking the laser fre-
quency at this point, denoted as fP2. The Raman gain profile
measurement was periodically interrupted, and the sawtooth
was reconnected to ensure that the laser frequency remained
at the same position. The Ti:Sapphire laser was stable
enough so that only a minor adjustment of VB was needed
over the whole experimental period. The laser beam trans-
mitted through NPBS1 was then passed through a half-
wave plate (HWP), followed by a polarizing beam splitter
(PBS1). The angle of the HWP was adjusted as needed to
control the amount of light reflected by PBS1. The light
transmitted through PBS1 was passed through NPBS2.
The light transmitted through NPBS2 was passed through
an acousto-optic modulator (AOM3), driven by a voltage
controlled oscillator at frequency fAOM3. The value of
fAOM3 was set nominally at half the frequency difference
(∼3.034 GHz) between the F ¼ 2 and F ¼ 3 states in the
5S1∕2 manifold of 85Rb. The light upshifted in frequency
by fAOM3 was than reflected back and passed through the
AOM3 again, thus producing light at frequency fS, the

Raman probe frequency. The value of fS could be scanned
across the two-photon resonant condition for each Raman
pump by tuning the value of fAOM3. The field at fS, emerging
from AOM3 upon reflection, was then reflected partially by

Fig. 8 Comparison between velocity averaging model and nonaver-
aging model. Plots (a) and (b) show the gain and phase delay, respec-
tively, as a function of δ∕Γ3, where the solid (dashed) line represent
the averaging (nonaveraging) model.

Fig. 9 Comparison between copropagating and counter-propagating
cases. Plots (a) and (b) show the gain and phase delay, respectively,
as a function of δ∕Γ3, where the solid (dashed) line represent the
copropagating ( counter-propagating) case.

Fig. 10 Illustration of gain saturation in the case of a single Raman
gain: (a)–(c) the gain profile for three different probe Rabi frequencies
and (d) the peak value of gain as a function of increasing probe Rabi
frequency. The dashed vertical line indicates the position where
the Raman transition rate equals the optical pumping rate.
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NPBS2 and directed into the primary cell (Rb Cell 2) used
for producing the Raman gain.

The light reflected by PBS1 was passed through three
consecutive beam splitters (NPBS3, NPBS4 and NPBS2)
and also sent to the primary cell. This served as one of
the Raman pumps at frequency fP2. Light reflected by
NPBS3 was passed through two sequential AOMs (AOM1
and AOM2), configured so that AOM1 shifted the frequency
up by fAOM1, and AOM2 shifted the frequency down by
fAOM3, thus producing the second Raman pump at frequency
fP1. Thus, we have Δ ¼ fP1 − fP2 ¼ fAOM1 − fAOM2 . The
value of Δ was tuned as necessary by changing both fAOM1

and fAOM2. The beam at frequency fP1, emerging from
AOM2, was then reflected by NPBS4 and then passed

through NPBS2, entering the primary cell (Rb Cell 2),
while copropagating with the other Raman pump as well
as the probe. Note that the two Raman pumps have the
same (linear) polarization, while the probe polarization is
orthogonal to that of the pumps. Upon exiting the primary
cell, the beams were passed through another PBS (PBS2),
thus separating the probe from the pumps. The transmitted
probe power was monitored with a photodetector.

The beam necessary for the optical pumping, at frequency
fOP, was generated from a different laser system: a diode
laser combined with a tapered amplifier. A part of the light
from this laser was reflected by a beam-splitter (NPBS5) and
passed through another reference Rb cell (Rb cell 3). The
same technique as described above was used to ensure

Fig. 11 Illustration of gain saturation in the case of double-Raman gain: (a)–(c) the gain profile for three
different probe Rabi frequencies and (d) the gain at the center of the profile as a function of the probe Rabi
frequency. The dashed vertical line corresponds to the points where the Raman transition rate equals
the optical pumping rate.

Fig. 12 85Rb transitions: (a) the experiment scheme and (b) the linear
absorption spectrum of 85Rb and 87Rb. The dashed line indicates
the frequency of f p1.

Fig. 13 The experimental setup of double-Raman gain. Laser 1 is
a Ti-Sapphire laser operating at 795 nm. Laser 2 is a diode laser
with tapered amplifier operating at 780 nm. See text for details.
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that this laser remained resonant with the 5S1∕2, F ¼
2 → 5P3∕2 transition in 85Rb. The light passing through
NPBS5 was then reflected by PBS2 into the primary cell.

The solid line in Fig. 14 shows a typical experimental
result obtained with this setup. The vertical axis shows
the gain experienced by the probe. The horizontal axis is
the frequency of the probe, expressed in term of δ∕Γ3,
where Δp is the mean detuning of the two Raman pumps
[see Fig. 12(a)], δ is the detuning of the Raman probe,
and Γ3 is the radiative linewidth of the intermediate state,
which is ∼2π � 6 � 106 s−1. For this data, we have Δp∕Γ3 ∼
200 and Δ∕Γ3 ¼ 1.365. The cell was heated to ∼90°C, cor-
responding to a density of ∼2 � 10 m−3.24 The power in the
first Raman (lower frequency) pump was 48.4 mW, and that
in the second Raman pump was 12.9 mW. The power in
the probe beam was 150 μW. The diameter of the probe
was about the same as that of the first Raman pump
(dpump1∕dprobe ≅ 1), while the diameter of the second
Raman pump was somewhat bigger (dpump1∕dpump2 ≅ 0.75).

The dashed line in Fig. 14 shows the result of the simu-
lation corresponding to this data. Here, we increased the
value of M until a stable result was obtained for M ≥ 7.
The plot shown corresponds to M ¼ 7. For the simulation,
we have used the pump and probe powers listed above, and
used the same ratios for the beam diameter as shown above.
However, the actual size of the diameter for the first Raman
pump was used as a fitting parameter. This was necessary
because the absolute calibration of the beam profile used
to measure the beam diameters was somewhat inaccurate.
A value of dpumps ≅ 1.4 mm produced the plot shown
here. We also assumed that the transition strength for
each leg of the Raman transition is the same, with a satura-
tion intensity that is 1.5 times larger than that for the strong-
est (cycling) transition in the D2-manifold of 85Rb (i.e.,
the F ¼ 3, mF → F 0 ¼ 4, mF ¼ 4 transition). This is an
approximation based on considering all different Zeeman
sublevels that actually contribute to the Raman transition
for the cross linear polarization used. A more accurate cal-
culation would have been to keep track of all the Zeeman
sublevels explicitly and will be carried out in the near
future. Similarly, we have used an approximated value of

Γ12 ≅ 0.35Γ3, while the maximum possible value of this
rate is ∼0.5Γ3. The peak value of the gain for the simulation
was found to be ∼2.4. However, the peak value of the gain
observed experimentally was somewhat uncertain due to
some imprecision in the measurement of the amplified and
unamplified probe power.

5 Conclusion
In this paper, we have presented a detailed model for com-
puting the gain profile generated by a pair of Raman pumps
applied to a Λ-type system, for the condition where the
pumps are allowed to be very strong with an arbitrarily
small difference frequency. Specifically, we have developed
a code that enables one to keep track of an arbitrarily large
number of high order harmonics that result from the inter-
ference between the two pumps. We have verified the valid-
ity of these codes by considering many limiting conditions.
We then used this code to understand the behavior of the gain
profile for a wide range of conditions. We have also identi-
fied the condition under which the Raman gain saturates.
Specifically, we have shown that the gain saturation occurs
when the effective two-photon transition process, mediated
by the mean value of the two Raman pump fields and the
probe field, reaches a transition rate that equals the rate of
optical pumping used to produce the Raman population
inversion. A nontrivial conclusion of this finding is that
the Raman probe beam can become much stronger than
each of the pump beams under properly chosen parameters.
We also describe an experimental setup for producing a dou-
ble-Raman gain using a Rb vapor cell, under the conditions
where higher harmonics become significant in the gain pro-
file. We find the prediction of one model agrees well with the
experimental result. The model presented here is likely to be
very useful in developing a numerical code for a superlumi-
nal laser under a wide range of conditions.

Acknowledgments
This work was supported in part by the AFOSR Grant No.
FA9550-10-1-0228 and NASA Grant No. NNM13AA60C.

References

1. H. N. Yum et al., “Superluminal ring laser for hypersensitive sensing,”
Opt. Express 18(17), 17658–17665 (2010).

2. M. S. Shahriar et al., “Ultrahigh enhancement in absolute and relative
rotation sensing using fast and slow light,” Phy. Rev. A 75, 053807
(2007).

3. G. S. Pati et al., “Demonstration of displacement-measurement-sensi-
tivity proportional to inverse group index of intra-cavity medium in
a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

4. G. S. Pati et al., “Demonstration of a tunable-bandwidth white light
interferometer using anomalous dispersion in atomic vapor,” Phys.
Rev. Lett. 99, 133601 (2007).

5. M. S. Shahriar and M. Salit, “Application of fast-light in gravitational
wave detection with interferometers and resonators,” J. Mod. Opt.
55, 3133 (2008).

6. D. D. Smith et al., “Dispersion-enhanced laser gyroscope,” Phys. Rev.
A 78, 053824 (2008).

7. D. D. Smith et al., “Enhanced sensitivity of a passive optical cavity by
an intracavity dispersive medium,” Phys. Rev. A 80, 011809(R) (2009).

8. D. D. Smith et al., “Fast-light enhancement of an optical cavity by
polarization mode coupling,” Phys. Rev. A 89, 053804 (2014).

9. O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on
Brillouin fiber laser sensor based on white light cavity,” Opt. Express
20(27), 28234 (2012).

10. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal
light propagation,” Nature 406, 277–279 (2000).

11. J. S. Toll, “Causality and the dispersion relation: logical foundation,”
Phys. Rev. 104, 1760–1770 (1956).

12. A. Wicht et al., “White-light cavities, atomic phase coherence, and
gravitational wave detectors,” Opt. Commun. 134, 431–439 (1997).

Fig. 14 Experimental data versus simulation results. See text for
details.

Optical Engineering 057106-10 May 2015 • Vol. 54(5)

Wang et al.: Effect of multiorder harmonics in a double-Raman pumped gain medium. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/11/2015 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1364/OE.18.017658
http://dx.doi.org/10.1103/PhysRevA.75.053807
http://dx.doi.org/10.1016/j.optcom.2008.06.075
http://dx.doi.org/10.1103/PhysRevLett.99.133601
http://dx.doi.org/10.1103/PhysRevLett.99.133601
http://dx.doi.org/10.1080/09500340802454989
http://dx.doi.org/10.1103/PhysRevA.78.053824
http://dx.doi.org/10.1103/PhysRevA.78.053824
http://dx.doi.org/10.1103/PhysRevA.80.011809
http://dx.doi.org/10.1103/PhysRevA.89.053804
http://dx.doi.org/10.1364/OE.20.028234
http://dx.doi.org/10.1038/35018520
http://dx.doi.org/10.1103/PhysRev.104.1760
http://dx.doi.org/10.1016/S0030-4018(96)00579-2


13. R. H. Rinkleff and A. Wicht, “The concept of white light cavities using
atomic phase coherence,” Phys. Scr. T 118, 85–88 (2005).

14. R. Fleischhauer and J. Evers, “Four wave mixing enhanced white-light
cavity,” Phys. Rev. A 78, 051802(R) (2008).

15. H. Wu and M. Xiao, “White-light cavity with competing linear and
nonlinear dispersions,” Phys. Rev. A 77, 031801(R) (2008).

16. A. Rocco et al., “Anomalous dispersion of transparent atomic two- and
three-level ensembles,” Phys. Rev. A 66, 053804 (2002).

17. T. Laupretre et al., “Anomalous ring-down effects and breakdown of
the decay rate concept in optical cavities with negative group delay,”
New J. Phys. 14, 043012 (2012).

18. T. Laupretre et al., “Photon lifetime in a cavity containing a slow-light
medium,” Opt. Lett. 36(9), 1551–1553 (2011).

19. J. Schaar, H. Yum, and M. S. Shahriar, “Theoretical description and
design of a fast-light enhanced helium-neon ring-laser gyroscope,”
Proc. SPIE 7949, 794914 (2011).

20. H. N. Yum et al., “Demonstration of white light cavity effect using
stimulated Brillouin scattering in a fiber loop,” J. Lightwave Technol.
31(23), 3865–3872 (2013).

21. M. O. Scully and W. E. Lamb, Laser Physics, Westview Press,
Boulder, Colorado (1974).

22. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge
University Press, New York (1997).

23. M. S. Shahriar et al., “Evolution of an N-level system via automated
vectorization of the Liouville equations and application to optically
controlled polarization rotation,” J Mod. Optic. 61(4), 351–367 (2014).

24. D. A. Steck, “Rubidium 85 D line data,” http://steck.us/alkalidata/
rubidium85numbers.pdf (17 May 2015).

YeWang received his BS degree in optical engineering from Zhejiang
University in 2008. Currently, he is a PhD student in the Department

of Electrical Engineering and Computer Science (EECS) at
Northwestern University, working in the Laboratory for Atomic and
Photonic Technology under Professor Selim Shahriar. His research
is focused on investigation of ultra-low light level nonlinear optics
using tapered nanofiber and the application of anomalous dispersion
for precision metrology.

Zifan Zhou received his BS degree in electrical engineering from
Huazhong University of Science and Technology in 2012. Currently,
he is a PhD student in electrical engineering at Northwestern Univer-
sity, working in the Laboratory for Atomic and Photonic Technology
under Professor Selim Shahriar. His research is focused on applica-
tions of slow and fast light as well as gravitational wave detection.

Joshua Yablon received his BS degree in engineering physics at
Cornell University in 2007. Currently, he is a PhD student in electrical
engineering at Northwestern University, working in the Laboratory for
Atomic and Photonic Technology under professor Selim Shahriar. His
research is focused on application of fast light for precision metrology,
as well as gravitational wave detection.

Selim Shahriar is a professor in the Departments of EECS and
Physics and Astronomy at Northwestern University. His received
his PhD from MIT in 1992. His research interests include applications
of slow and fast light, quantum computing, gravitational wave detec-
tion, tests of general relativity, holographic and polarimetric image
processing, atomic clocks, and atom interferometry. He has published
403 journal and conference papers. He is a fellow of SPIE and OSA.

Optical Engineering 057106-11 May 2015 • Vol. 54(5)

Wang et al.: Effect of multiorder harmonics in a double-Raman pumped gain medium. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/11/2015 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1238/Physica.Topical.118a00085
http://dx.doi.org/10.1103/PhysRevA.78.051802
http://dx.doi.org/10.1103/PhysRevA.77.031801
http://dx.doi.org/10.1103/PhysRevA.66.053804
http://dx.doi.org/10.1088/1367-2630/14/4/043012
http://dx.doi.org/10.1364/OL.36.001551
http://dx.doi.org/10.1117/12.880786
http://dx.doi.org/10.1109/JLT.2013.2288326
http://steck.us/alkalidata/rubidium85numbers.pdf
http://steck.us/alkalidata/rubidium85numbers.pdf
http://steck.us/alkalidata/rubidium85numbers.pdf
http://steck.us/alkalidata/rubidium85numbers.pdf

