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a b s t r a c t

Previously, we had proposed the technique of light shift imbalance induced blockade which leads to a
condition where a collection of non-interacting atoms under laser excitation remains combined to a
superposition of the ground and the first excited states, thus realizing a collective state quantum bit
which in turn can be used to realize a quantum computer. In this paper, we show first that the light shift
imbalance by itself is actually not enough to produce such a blockade, and explain the reason why the
limitation of our previous analysis had reached this constraint. We then show that by introducing
Rydberg interaction, it is possible to achieve such a blockade for a wide range of parameters. Analytic
arguments used to establish these results are confirmed by numerical simulations. The fidelity of coupled
quantum gates based on such collective state qubits is highly insensitive to the exact number of atoms in
the ensemble. As such, this approach may prove to be viable for scalable quantum computing based on
neutral atoms.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In most protocols for quantum computing or quantum in-
formation processing, the fundamental building block is the
quantum bit (qubit). A single, neutral atom behaving as a two-level
system can be used as a qubit. Compared to ions, neutral atoms
have the advantage that they are highly decoupled from electro-
magnetic perturbations. However, coupling two qubits using
neutral atoms is difficult to achieve. One approach for such cou-
pling makes use of the Rydberg blockade [1–7]. In another ap-
proach, a cavity mode is used to couple atoms held inside the
cavity [8–11]. A key parameter in this approach is the single
photon Rabi frequency, which must be much larger than atomic
and cavity decay rates. This constraint can only be met by making
the cavity very small, which in turn makes it difficult to hold many
qubits inside.

One approach for circumventing this constraint is to make use
of atomic ensembles. The single photon Rabi frequency for an
ensemble scales as N , where N is the number of atoms, thus
making it possible to make use of a much larger cavity. However,
in order to use an ensemble for quantum computing, it is neces-
sary to ensure that it behaves as an effective two-level system.
When exposed to only a single photon (or in a Raman transi-
tion, where one leg is exposed to a single photon), an ensemble of
two-level atoms does indeed behave like a single two-level sys-
tem. This property has been used to realize quantum memory
elements using such an ensemble [12,13]. However, any protocol
that aims to create a two qubit logic gate (such as a CNOT gate)
between two ensembles, necessary for realizing a quantum com-
puter, must make use of additional, classical laser fields. Under
such excitations, an ensemble no longer behaves like a two-level
system. Instead, it exhibits a cascade of energy levels that are
equally spaced. When exposed to a classical field, all levels in the
cascade get excited [14], making it impossible to realize a quantum
logic gate. In order to overcome this constraint, it is necessary to
create conditions under which the cascade is truncated to a two-
level system.

Previously, our group had proposed a scheme for producing
such a blockade, using imbalances in light shifts experienced by
the collective states [15,16]. In that model, the light shifts were
calculated by using a perturbation method, keeping terms up to
second-order in laser intensity. However, it turns out that when
the collective excitation is viewed as a product of individual
atomic states, an accurate representation for classical laser fields,
and in the absence of any interaction between the atoms, the
blockade effect disappears. We have verified this conclusion by
numerically simulating the evolution of collective states for small
values of N. It is still possible to produce such a blockade for a laser
field described as a superposition of photon number states.
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However, when the mean photon number in such a field is very
large, such as in a classical laser field, the blockade tends to vanish.
Thus, in order to produce a blockade under excitation with a
classical laser field, we must make use of some interaction be-
tween the atoms. In this paper, we propose to make use of inter-
action induced via excitation to Rydberg states to achieve this goal.

The rest of the paper is organized as follows. In Section 2, we
review briefly the formulation of collective excitation of lambda-
type atoms. In Section 3, we summarize the model we had de-
veloped previously for light shift blockade (LSB) of collective ex-
citation using second-order perturbation approximation. In Sec-
tion 4 we discuss how an alternative formulation of collective
excitation allows us to determine the effect of light shift exactly,
and identify conditions under which LSB is not possible. In parti-
cular, we show that when all excitation fields are classical, there is
no blockade. In Section 5, we show how the interaction between
two Rydberg states can be used to realize LSB even under classical
excitation. In Section 6, we generalize this process for N atoms and
show how LSB works for N-atom ensembles. Finally, in Section 7,
we summarize our results, and present an outlook for using this
approach for realizing a multi-qubit quantum computer.
2. Collective state model

In order to avoid the deleterious effect of spontaneous emis-
sion, it is useful to realize a qubit based on two states that are
long-lived. A convenient example for such a system consists of a
Zeeman sublevel in one of the ground hyperfine state (e.g. mF¼0,
F¼1, S52

1/2 in 87Rb) and another Zeeman sublevel in another

ground hyperfine state (e.g. mF¼0, F¼2, S52
1/2 in 87Rb). These le-

vels can be coupled by two laser fields to an intermediate state
(e.g. mF¼1, F¼2, P52

1/2 in 87Rb). When the interaction is highly
detuned with respect to the intermediate state, the laser fields
cause a Raman transition between the two low lying states, thus
producing an effective two-level system.

This is generally known as the Λ-system, illustrated schema-
tically in Fig. 1. Here, the two ground states are |a and c , and the
intermediate state is g . The states a and g are coupled by a field
with a Rabi frequency of Ω1 and a detuning of δ1. Likewise, states
c and g are coupled by a field with a Rabi frequency of Ω2 and a
detuning of δ2. In the basis of states a , c and g , the Hamiltonian
under electric dipole and rotating wave approximation, and
Fig. 1. Three-level scheme of single atom in an ensemble.
rotating wave transportation, is given by
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where δ δ δ≡ +( )/21 2 is the average detuning and Δ δ δ≡ −( )1 2 is
the two-photon detuning. In what follows, wewill assume that δ is
very large compared toΩ1 and Ω2, as well as the decay rate, Γ, of
the state g . We will further assume that the two lasers are co-
propagating.

For N such non-interacting atoms, the ensemble can be mod-
eled using symmetric collective states, also known as symmetric
Dicke states [14]. The first few states are defined as follows:
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In Reference [17], we have shown that the system remains
confined to a generalized form of these symmetric collective
states, independent of the relative separation between the atoms
(and hence the size of the ensemble), as long as it is assumed that
each atom sees the same amplitude of the Rabi frequency, and the
same laser frequency (i.e., any residual Doppler shift of the Raman
transition frequency due to the motion of the atoms is negligible).
The generalized form of the symmetric states is formally the same
as those in Eq. (2), except that the excited states incorporate the
relevant spatial phases of the fields at the location of a given atom.
This can be understood by noting that any phase factors accom-
panying the Rabi frequencies in the Hamiltonian of Eq. (1) can be
transformed out to produce a version of the Hamiltonian where
the Rabi frequencies are real. The transformation necessary for this
transfers the phases to the basis states. We refer the reader to
Reference [17] for details.



Fig. 2. Schematic illustration of the relevant collective states and the correspond-
ing coupling rates.

Fig. 3. Exact numerical solution of the evolution of the states using the LSB
parameters (in units of Γ ): Ω = 0.0011 , Ω = 1002 , N¼2500, δ = 1000 and Δ = 2.497.
The plot is for 5π oscillations. The vertical axis is the population of the indicated
collective state.
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The collective states of Eq. (2) are illustrated schematically in
Fig. 2. Here, for example, G1 represents a state where only one
atom on average is excited to state g , with the rest remaining in
state a . Similarly, C1 represents a state where only one atom on
average is excited to state c , with the rest remaining in state a ,
and so on. In our blockade scheme, we try to confine the system to
the two lowest energy states A and C1 . If we could achieve this
and minimize the excitations to the first few higher energy states,
then excitations to even higher states will be almost nonexistent.
It can be shown that the total number of symmetric states is

= + ! !N N N( 2) /2S . For large N, =N N /2S
2 so that the size of the

Hamiltonian scales as N4. Thus, an analysis of the evolution of the
complete system exactly in this picture is computationally in-
tractable. However, a plausible way to explore the possibility of
finding the condition for the blockade is to truncate the system to
a small size, and show that the excitation to the excluded states
are negligible.

Here, we choose to truncate the system to six levels: A , G1 ,

C1 , G1,1 , C2 and G1,2 . If the condition we find for the blockade
shows negligible excitation to states that have non-zero coupling
to the excluded states, the truncation would then be justified. The
Hamiltonian for these states can be expressed as [15]
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3. Original model for light shift blockade

The Hamiltonian in Eq. (3) can be further simplified by adia-
batically eliminating the states G1 , G1,1 , and G1,2 when

δ Ω≫ N 1,Ω2, Δ, and ≫N 1. The reduced Hamiltonian in the basis
of states A , C1 and C2 is
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where ε Ω δ= N /4A 1
2 , ε Ω Ω δ= + −N[ ( 1) ]/4C1 2

2
1
2 , and ε Ω= [2C2 2

2

Ω δ+ −N( 2) ]/41
2 are the lowest order light-shifts of the states A ,

C1 and C2 respectively, and Ω Ω Ω δ≡ N /21 2 is the Raman Rabi
frequency. We can work out the LSB conditions with this Ha-
miltonian. By making the light shifts in the states A and C1 equal
and the shift in C2 highly detuned from them, we can eliminate
the excitation to C2 .

The states | 〉A and | 〉C1 are resonant when Δ ε ε= − ≈C A1

Ω Ω δ−( )/42
2

1
2 . Upon subtraction of a suitably chosen term

ε Δ+( /2)A from the diagonal term in the Hamiltonian and the
approximation that ≫N 1, we get
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where the blockade shift is defined as Δ ε ε ε ε≡ − − −( ) ( )B C C C A2 1 1 .
This quantity vanishes for the first-order values of the light shifts
εA, εC1, and εC2 shown above, so that there is no blockade effect.
However, for second-order approximation, the blockade shift is
Δ Ω Ω δ= − +( )/(8 )B 1

4
2
4 3 . If we operate under condition where

Δ Ω≫ / 2B , the transition to |C2 becomes inconsequentially small
and the ensemble of atoms oscillates between the collective states
A and C1 .

We have also determined numerically, for N¼2500, the evolution
of the population for the six collective states in the truncated system,
using the Hamiltonian of Eq. (3), without resorting to adiabatic elim-
ination. The results are illustrated in Fig. 3, for a set of parameters that
satisfy the LSB condition identified above. As can be seen from this
figure, nearly all the population stays between levels A and C1 ,
undergoing Rabi oscillations between them. The residual excitations of
the other four states are very small, and can be made smaller by using
weaker Rabi frequencies. Note that we have ignored the decay of the
g states (at the rate of Γ), which is a valid approximation for δ Γ≫ .
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4. Limitations of the original model for light shift blockade

In the preceding section, we showed that the numerical si-
mulation of the truncated system appears to validate the LSB
process. For a large value of N, this result is still an approximation.
However, the system can be modeled exactly for very small values
of N. In particular, if we choose N¼2, there are only 6 collective
states altogether. Thus, it is possible to check without truncation
whether the LSB process holds in this case. Referring back to Fig. 2,
the complete set of collective states for N¼2 consists of A , G1 ,

C1 , G1,1 , C2 and G2 . We determined the evolution of this sys-
tem numerically, starting with the system being in the A state.
The results are illustrated in Fig. 4. In Fig. 4a, we show the popu-
lation of the collective states under the approximation that the
state G2 can be neglected completely, since δ Ω≫ N 1 and
δ Ω≫ 2, corresponding to very small populations in states G1 and

G1,1 . As can be seen, the result is consistent with LSB, since the

maximum population of C2 is very small. In Fig. 4b, we relax this
approximation, and keep the state G2 in the system. This pro-
duces an apparently surprising result. The population in C2 can
now reach almost unity for some interaction time. Thus, the LSB
process is strongly violated. It should be noted that the maximum
population of G2 is negligible (Fig. 4a), so that ignoring the ex-
citation to G2 seems to be a reasonable one. Yet, the relaxation of
this approximation modifies the population dynamics in a very
significant way.

In order to understand this behavior, it is instructive first to
consider the process of collective excitation more explicitly. Spe-
cially, it can be shown that for excitation by semi-classical fields,
and in the absence of interaction between the atoms, the general
quantum state of an ensemble is always given by the outer (ten-
sor) product of the quantum states of the individual atoms [18].
b

a

Fig. 4. Numerical solution of the evolution of the collective states of two atoms. Here, Ω1
atoms when G2 is eliminated. (b) Collective states of two atoms with the full Hamilto
The collective states representation of the evolution of such a
system is merely an alternative way of describing the process. To
illustrate this explicitly, let us consider a case involving two-level
atoms, with a and c being the lower and higher energy levels
respectively.

Let us denote by ψi the quantum state of the i-th atom. Then,
the total quantum state of the system, Ψ| 〉, is given by
Ψ Π ψ| 〉 = | 〉=i

N
i1 . Thus, if we write ψ α β| 〉 = | 〉 + | 〉a ci i i i i , then

Ψ Π α β| 〉 = | 〉 + | 〉= a c( )i
N

i i i i1 . For simplicity, let us assume that N¼2.
We then get Ψ α β α β| 〉 = | 〉 + | 〉 | 〉 + | 〉a c a c( )( )1 1 1 1 2 2 2 2 . Consider the
product state basis which is spanned by | 〉a a1 2 , | 〉a c1 2 , | 〉c a1 2 and
| 〉c c1 2 . The total state can thus be written as
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Consider next the complete collective state basis spanned by
| 〉a a1 2 , | + 〉 = | 〉 + | 〉a c c a( )/ 21 2 1 2 , | − 〉 = | 〉 − | 〉a c c a( )/ 21 2 1 2 , and
| 〉c c1 2 . This basis is simply related to the product state basis by a 45°
rotation in the plane of | 〉a c1 2 and | 〉c a1 2 , so that the rotation matrix
can be written as
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(7)
= 0.001, Ω = 1002 , δ = 1000 and Δ = 2.497. (in units of Γ). (a) Collective states of two
nian.
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Thus, the total state in the collective state basis can be written as
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Similarly, we can represent the Hamiltonian in these different
bases. In the rotating wave picture, the Hamiltonian for a single
atom can be expressed as

⎡
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Ω δ
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H
0 /2
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1

where Ω is the Rabi frequency and δ ω ω ω= − −( )c a is the de-
tuning of the laser frequency from the resonance frequency of the
two states. When there are two atoms, the Hamiltonian in the
basis of states a a1 2 , a c1 2 , c a1 2 and c c1 2 is = ⊗ + ⊗H H I I H1 2 1 2

where Ii is the identity matrix and Hi is the Hamiltonian for the i-
th atom. For example,
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Thus, the Hamiltonian can be written as
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where the Rabi frequencies are assumed to be real. Under a 45°
rotation in the plane of a c1 2 and c a1 2 , the new Hamiltonian in
the basis a a1 2 , + , − , c c1 2 is
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For Ω Ω Ω= =1 2, the asymmetric state, − , is decoupled from
the other states, and the Hamiltonian becomes
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The Hamiltonian in Eq. (12) describes the situation where only
symmetric collective states are excited.

This is also evident by noting that the general collective state
can now be expressed as Ψ α αβ β| 〉 = | 〉 + | + 〉 + | 〉aa cc2c

2 2 , where
α α α= =1 2 and β β β= =1 2 (since Ω Ω=1 2). The form of this state
shows clearly that it is impossible to suppress excitation to the |cc
state while still exciting the + state. Thus, the degree of ex-
citation of a given collective state is related to the degree of ex-
citation of all other collective states. While the three-level system
we are considering is more complicated in the details, this fun-
damental rule still holds. As such, under this set of conditions (i.e.
semiclassical laser field, and no interaction between the atoms) it
is not possible to block the excitation to state C2 while allowing
for excitation of state C1 . The result shown in Fig. 4b is merely a
manifestation of this constraint. The subtle error that led us to the
previous conclusion about the realizability of LSB was the ap-
proximation that the role of G2 is negligible. This approximation
was entirely logical in a general sense, but turns out, rather sur-
prisingly, not to be valid.

Of course, if the laser field is treated quantum mechanically, by
considering it as a superposition of Fock states, the quantum state
of the atoms and the photons are inherently entangled. As such,
the state of the ensemble cannot be expressed as a product of the
states of each atom. Under such a situation, it should in principle
be possible to achieve the blockade effect. However, such a
blockade works in a clean manner only when the numbers of
photons are limited to a few. As discussed earlier, our objective is
to achieve a blockade when the laser field has a mean photon
number much larger than unity, i.e. the semi-classical limit. In this
limit, the only way to achieve a blockade is to allow for interaction
between the atoms. Here we describe a scheme where interactions
between Rydberg excited levels are used to achieve the LSB effect.
5. Rydberg assisted LSB of two atoms

We modify the lambda scheme of a single atom by adding a
Rydberg level r and an intermediate level d , which is coupled to
r and c , but not to a , as illustrated in Fig. 5a. We denote as ω j

the energy of the state j , for j¼a, g, c, d and r. The Rabi fre-
quencies are denoted as Ω1, Ω2, Ω3 and Ω4 for the →a g , →g c,

→c d and →d r transitions, respectively. For convenience, we
also define the relevant detunings as δ ω ω ω= − −( )b a1 1 ,
δ ω ω ω= − −( )b c2 2 , δ ω ω ω= − −( )d c3 3 and δ ω ω ω= − −( )r d4 4 .
As before, the average detuning for the Λ-transition is defined as
δ δ δ= +( )/21 2 , and the corresponding two photon detuning is
defined as Δ δ δ= −2 1. We also define as δ δ δ= +r 3 4 to be the two
photon detuning for the ladder transition → →c d r . After making
the usual dipole and rotating wave approximations and upon
making the rotating wave transformation, the Hamiltonian in the
basis of states a , g , c , d and r can be expressed as

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Δ Ω
Ω δ Δ Ω

Ω Ω
Ω δ Ω

Ω δ

=
− +

−
−

H

/2 0 0 0

/2 /2 /2 0 0

0 /2 0 /2 0

0 0 /2 /2

0 0 0 /2

.

(13)

R

r

1

1

1 2

2 3

3 3 4

4

To illustrate the basic concept, we consider first the collective sates
of only two atoms, with a distance r12 which is assumed to be
comparable to the characteristic distance scale of interatomic
Rydberg interaction.

For simplicity, we consider first the symmetric collective states
of two atoms, as illustrated in Fig. 5b, where we have adopted the
compact notation that, for example, =AA aa , =CC cc ,

= +( )AC ac ca / 2 and so on. Since the Hamiltonian for the
two atoms now contains the interaction between the two atoms,
the general quantum state of the total system can no longer be
written as a product between the quantum states of individual
atoms. As such, it should now be possible to produce the LSB ef-
fect. Specifically, note that the dipole–dipole interaction between
the atoms when they are both excited to the Rydberg state will
shift the energy of the RR state compared to its value when the
atoms are far apart. Since there is an asymmetry in the degree to
which the r state is coupled to a and c , the shift in the energy
of RR will affect differently the light shifts experienced by AA ,
AC and CC . This is precisely what is needed for realizing LSB. In



a

b

Fig. 5. (a) Modified Λ-system of a single atom. (b) Collective states of two atoms.

a b

Fig. 6. (a) Single atom five-level scheme. (b) Simplified three-level scheme after
adiabatically eliminating g and d .
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what follows, we derive analytically, under adiabatic elimination
approximation, the parameters needed for realizing the optimal
LSB condition. We then verify the results via exact numerical
calculation. This is followed by a derivation of the condition nee-
ded for optimal LSB for an arbitrary value of N, the number of
atoms in the ensemble.

As can be seen from Fig. 5b, there are fifteen symmetric col-
lective states for two atoms. In order to establish an approximate
analytical result (which would then serve as a guide for choosing
parameters for exact numerical calculation), we first simplify the
picture by reducing the 5-level system for each atom (see Fig. 6a)
to an effective 3-level system (see Fig. 6b) via eliminating adia-
batically two of the intermediate states, g and d , that are highly
detuned. Once this is done, the effective Hamiltonian for each
atom, in the basis of a , c and r , can be expressed as

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Δ ε Ω
Ω ε Ω

Ω δ ε
=

+

− +

′H

/2 0

/2 /2

0 /2

,

(14)

R

a ac

ac c cr

cr r r

1

where Ω Ω Ω δ= /2ac 1 2 is the Raman–Rabi frequency of transition
→a c , and Ω Ω Ω δ= /2cr 3 4 3 is the two-photon Rabi frequency of

transition →c r , while ε Ω δ= /4a 1
2 , ε Ω δ Ω δ= +/4 /4c 2

2
3
2

3 and
ε Ω δ= /4r 4

2
3 are the light shifts of states a , c and r respectively.

If we define two new parameters Δ Δ ε ε= + −ac a c and
Δ δ ε ε= + −cr r c r , these become the effective, relevant detunings
between the levels. Then we can rewrite the single atom Ha-
miltonian in the basis of a , c and r as

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Δ Ω
Ω Ω

Ω Δ
=

−

′H

/2 0

/2 0 /2

0 /2

.

(15)

R

ac ac

ac cr

cr cr

1

If the distance between the two atoms, r12, is much larger than
the scale of Rydberg interaction, the combined Hamiltonian in the
basis of the nine product states ( a a1 2 , a c1 2 , a r1 2 , c a1 2 , c c1 2 ,
c r1 2 , r a1 2 , r c1 2 , r r1 2 ) can be written as = ⊗ + ⊗′ ′H H I I HT R R1 2 1 2 ,
and the 81 elements of HT can be easily calculated in the same
manner as used in deriving Eq. (10). When transformed to the
collective state picture, the asymmetric states become decoupled,
just as before, and we are left with a six state system spanned by
AA , AC , CC , AR , CR and RR (using the compact notation in-
troduced in Fig. 5b), which are shown in Fig. 7, and the
Hamiltonian can be expressed as

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Δ Ω

Ω Δ Ω Ω

Ω Ω

Ω Δ Δ Ω

Ω Ω Δ Ω

Ω Δ

=
−

−

−

′H

2
2

2
0 0 0 0

2
2

2
2

1
2

0 0

0
2

2
0 0

2
2

0

0
1
2

0
1
2

0

0 0
2

2
1
2

2
2

0 0 0 0
2

2
2

.

(16)

T

ac ac

ac ac ac cr

ac cr

cr ac cr ac

cr ac cr cr

cr cr

When the distance r12 becomes comparable to the character-
istic distance scale for interatomic Rydberg interaction, the
Hamiltonian for the collective states, ′HTR, is the same as ′HT except
for the last diagonal element. Specifically, 〈 | | 〉′RR H RRTR

Δ=〈 | | 〉 − = − −′RR H RR V V2T r cr r , where Vr represents the dipole–
dipole interaction between two atoms. Thus, we can write

= − | 〉〈 |′ ′H H V RR RR . (17)TR T r

The various terms of ′HTR are illustrated schematically in Fig. 7.
When we allow Δ Δ≫cr ac, Ωac, Ωcr , the upper levels AR , CR

and RR can be adiabatically eliminated. The reduced Hamiltonian



Fig. 7. The coupling rates and detunings of collective states of a simplified two-atom system.
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in the basis of AA , AC and CC is

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

′

Δ Ω

Ω Δ
Ω

Ω Ω

Ω Ω Ω

≅ + · + ·
−

+ ·
−

·
−

H v
uv

vw

uv
vw

v
vw

2
2

2
0

2
2 2

2
2

2
2 1 2

0
2

2
2

2 1 2 1 2

,

(18)

TR

ac ac

ac ac
cr

ac cr

ac cr cr

where, for simplicity, we have defined Ω Δ=u /2ac cr , Ω Δ=v /2cr cr ,
Ω Δ= +w V/2(2 )cr cr r , and we have assumed that Ω Ω≫cr ac. In or-

der to make the levels AA and AC resonant, we enforce the
condition that Δ Ω= ·v/2ac cr , which leads to Ω Δ Δ= 4cr ac cr

2 . When
the energy levels are all reduced by Δ2 ac , Eq. (18) becomes

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

′

Ω

Ω Ω Ω

Ω Ω Δ

= + ·
−

+ ·
−

H uv
vw

uv
vw

0
2

2
0

2
2

0
2

2
2

2 1 2

0
2

2
2

2 1 2

,

(19)

TR

ac

ac ac cr

ac cr B

where Δ Ω≡ · −vw vw2 /(1 2 )B cr is the blockade shift. When ΔB is
much larger than the coupling between the states AC and CC , we
are able to block the excitation to state CC and achieve LSB. This
can be achieved under the condition where Δ Ω+ ≫V 2 /r cr cr

Ω Δ2 ac cr . When these conditions are met, we achieve resonance
between states AA and AC , blocking excitation to state CC .

In order to verify the validity of this conclusion, we have si-
mulated the evolution of the three-level system of two atoms (i.e.
the system shown in Fig. 6b), using the 6�6 collective state Ha-
miltonian, ′HTR (Eq. (17)), which included the effect of Rydberg
interaction, but without making use of the adiabatic elimination of
states AR , CR and RR . The parameters we have used are
Ω = 0.00002ac , Ω = 1cr , Δ = − 0.031129ac and Δ = − 8cr (in units of
Γ), consistent with the requirement of achieving LSB. The result of
this simulation is shown in Fig. 8. Fig. 8a represents the case when
the Rydberg-interaction parameter, Vr, is set to zero. In this case,
the maximum amplitude of CC reaches unity. When Vr¼16, the
maximum amplitude of CC is nearly zero, and the system oscil-
lates between AA and AC , as shown in Fig. 8b. It should also be
noted that under this blockade condition, the oscillation frequency
between levels AA and AC is increased by 2 . The upper levels
AR , CR and RR are minimally excited regardless of whether in-
teraction is present or not. This justifies the adiabatic elimination
of these states employed in deriving the 3�3 reduced Hamilto-
nian for the collective states, shown in Eq. (18).

The parameters used in the evolution of the simplified two-
atom Hamiltonian can be used to extract the values of parameters
necessary for the exact two-atom 15-level system shown in Fig. 5b.
We choose the parameters as follows: Ω = 0.00041 , Ω = 0.82 ,
δ = − 8, Δ = − 0.0199, Ω = 203 , Ω = 3204 , δ = − 32003 , δ = 32004 .
Notice that here we make the choice that Δ Ω Ω δ≃ −( )/42
2

1
2 in

order to produce full Rabi oscillations between AA and AC . The
results of the plots with and without the Rydberg interaction are
shown in Fig. 9. Despite the fact that 15 levels are present, only the
levels AA , AC and CC are populated while the excitations to the
other states remain under 1%. As was the case with the simplified
Hamiltonian, the presence of the Rydberg interaction ( =V 16r )
suppresses the excitation to level CC so that an effective two-level
system is generated, as illustrated in Fig. 10.
6. Rydberg assisted LSB in N-atom ensembles

This process can be generalized for N atoms. Referring back to
Fig. 6, we recall first that adiabatic elimination of states g and d
reduces the system to three levels (Fig. 6b). The first six collective
states involving these single atom states, for N-atoms, are as fol-
lows:

∑

∑

∑

∑

∑

| 〉 ≡ | ·· 〉

| 〉 ≡ | ·· ·· 〉

| 〉 ≡ | ·· ·· ·· 〉

| 〉 ≡ | ·· ·· 〉

| 〉 ≡ | ·· ·· ·· 〉

| 〉 ≡ | ·· ·· ·· 〉

=

≠

=

≠

≠

A a a a

C
N

a a c a

C
C

a a c c a

R
N

a a r a

R
C

a a r c a

R
C

a a r r a

, , , ,

1
, , , , , ,

1
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1
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1
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1
, , , , , , , .

(20)

N

j

N

j N

N j k j k

CN

j k N

j

N

j N

N j k j k

CN

j k N

N j k j k

CN

j k N

1 2

1
1

1 2

2

2 , ( )

2

1 2

1
1

1 2

1,1

2 , ( )

2 2

1 2

2

2 , ( )

2

1 2

Of course, there are many more collective states. However, our
goal is to find the condition where the system oscillates between
A and C1 , with negligible excitation to the remaining collective

states. If we can show that the excitation to states C2 , R1 , R1,1

and R2 are negligible, then it follows that the excitation to all
other higher energy collective states is also negligible. Thus, it is
justified to limit our consideration to only these six states.

With the single atom Hamiltonian in the basis of a , c and r
shown in Eq. (15), the Hamiltonian formed with states A , C1 , C2 ,



a b

Fig. 8. Evolution of population using the simplified two-atom picture in Fig. 6. Figure (a) represents the case when the dipole–dipole interaction is not present =V( 0)r .
Figure (b) represents the case when the dipole–dipole interaction is present =V( 16)r .

Fig. 9. Evolution of population using the full two-atom picture in Fig. 6(b) when the dipole–dipole interaction is not present =V( 0)r .
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Fig. 10. Evolution of population using the full two-atom picture in Fig. 6(b) when the dipole–dipole interaction is present =V( 16)r .

Fig. 11. Evolution of population in the six lowest energy states of Hamiltonian in
Eq. (20) for N¼1000, with the same conditions as Fig. 8 except Ωac here is N
smaller, and the dipole–dipole interaction Γ=V 16r .
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R1 , R1,1 and R2 can be written as

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Ω Δ Ω
Ω

Ω Ω

Ω
Δ Δ Ω
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2
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(21)

Under the condition that Δ Δ≪cr ac, ΩN ac, Ωcr , for large N, this
reduces to

⎡
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2( 1)
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(22)

in the basis of | 〉A and | 〉C1 and | 〉C2 , where the first two levels
were made resonant by choosing Δ Ω= · −v vw( /2) (1 2 )/ac cr

− − −N u vw(1 ( 1) 2 )2 . The blockade shift is now Δ ≡B

Ω · − − −vw N u vw2 /(1 ( 1) 2 )cr
2 . Note that when N¼2, the Ha-

miltonian, the detuning, and the blockade shift are equivalent to
the calculations made earlier for the two-atom case. The condi-
tions necessary to block the excitation to state C2 are

Ω Ω≫ Ncr ac and ≫w N u, which again occur when Δ→ −V 2r cr ,
just as in the case of N¼2.

Fig. 11 shows the populations of the six collective states of
Eq. (20) under the LSB conditions found for 1000 atoms. The
parameters are Ω = 0.00002/ 1000ac , Ω = 1cr , Δ = − 0.031129ac ,
Δ = − 8cr and =V 16r (in units of Γ). As can be seen, states A and
C1 are resonant, and population in state C2 is very small. With so

little excitation into C2 , the Rydberg assisted LSB guarantees the
suppression of the higher excitations, thereby validating the use of
a truncated Hamiltonian in Eq. (20).

So far, we have shown that the Rydberg assisted LSB works for
Γ=V 16r , where Γ is the decay rate of the state g . Consider, for

example, the specific case of 87Rb atoms. In this case, Γ ≃ 6 MHz,
so that ≃V 96 MHzr , which corresponds to an interatomic distance
of ∼ μ10 m. We envision a scenario where the collective ensemble
would be confined to a sphere with a diameter ∼ μ10 m, realizable,
for example, by loading atoms from a MOT into a FORT (far-off
resonance trap), containing about 103 atoms. For some pair of
atoms, the interatomic distance would be smaller than μ10 m. It is



Fig. 12. Evolution of population in the six lowest energy states of Hamiltonian in
Eq. (20), with the same conditions as Fig. 11 except the dipole–dipole interaction

Γ=V 16000r .
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well known that Vr scales approximately as −r 3, where r is the
interatomic distance between a pair of atoms for < μr 10 m [19].
Thus, for = μr 1 m, Γ≃ ≃ ×V 16000 96 10 MHzr

3 . We show in
Fig. 12 that the Rydberg assisted LSB works for this value of Vr for
N¼1000 atoms.
7. Conclusion

The light shift imbalance induced blockade in an atomic en-
semble had been studied previously, in which the difference in the
light shifts produced in collective state energy levels leads to a
condition where the system remains confined to a superposition of
the ground and the first excited states. The significance of this
result for quantum computing was discussed in Reference [20].
Upon further investigation into the nature of collective states, we
found that the light shift imbalance alone is not enough to produce
a blockade. By introducing Rydberg interaction, and using the
technique of adiabatic elimination, we are able to establish the
conditions under which the blockade can be achieved. Numerical
simulations confirm the validity of this result.

The ensemble-based qubits realized in this manner can be used
to implement a controlled-NOT (CNOT) gate, which is a universal
gate for quantum computing, using a variation of the Pellizzari
scheme [8]. The details of the process for realizing a CNOT gate in
this way, using 87Rb atoms are essentially the same as what was
presented in Reference [16]. Many such gates can be linked to one
another, via nearest neighbor quantum coupling, to realize an
elementary quantum computer (EQC). The size of an EQC, con-
tained inside a single vacuum chamber, is likely to be limited to a
number of the order of ten. However, as shown in Reference [16],
many such EQCs can be linked via optical fiber, using photons to
transport quantum information, thus making this approach scal-
able. Of course, it is also possible to realize a CNOT gate between
single atoms, caught in FORTs, by making use of Rydberg inter-
actions [21]. However, it is very difficult to load a single atom
consistently in a FORT. In contrast, the approach proposed here is
relatively insensitive to the actual number of atoms held in the
FORT. Thus, this approach may prove to be a more viable alter-
native for scalable quantum computing using neutral atoms.
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