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The nonlinear response of a resonant medium has many applications. To model and find the response of such a
medium requires solving the Schrödinger equation (SE), which is a computationally extensive task. In this paper,
we develop an analytical model to find the response of a resonant medium due to an applied field by employing
the spatio-temporal Fourier-transform (STFT)–domain-based transfer function. A key feature of this approach is
the use of the resonant excitation approximation (REA), which amounts to assuming that a group of atoms (or
other quantum systems) within a volume element in the STFT domain are excited by only the corresponding
volume element in the STFT domain of the field. We first derive the one-dimensional transfer function using an
inhomogeneously broadened atomic medium under the REA. Then, we develop the three-dimensional transfer
function and show that the analytical model agrees closely with the results obtained via an explicit simulation of
the atomic response. As a practical example of the analytical model, we show that it can be used to model a
spatio-temporal-correlator-based automatic event recognition system at a speed that is many orders of magnitude
faster than solving the SE. © 2017 Optical Society of America
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1. INTRODUCTION

For a given density, resonant media provide the strongest non-
linear interactions [1–4]. Typical examples of such media in-
clude rare-earth doped solids [5–7] and atomic vapors [8,9].
The nonlinear response of a resonant medium can be found
by numerically solving the quantum mechanical density matrix
equations, or simply the Schrödinger equation (SE), if dissipa-
tive processes can be ignored. However, this approach is time
consuming and cumbersome and, most importantly, does not,
in many cases, provide insight into the general characteristics of
the response of the medium, especially for a field with compli-
cated patterns in the spatio-temporal Fourier transform (STFT)
domain. In this paper, we develop an approach that enables one
to determine analytical expressions for the transfer function of
such a medium in the STFT domain. We show that the results
obtained by applying this approach agree well with those found
via exact an numerical integration of the quantum mechanical
equations of evolution. As a practical example of the utility of
this approach, we use it to determine the response of a spatio-
temporal-correlator (STC)-based automatic event recognition
(AER) [10–12] system in a transparent manner and at a speed

that is many orders of magnitude faster than direct numerical
integration.

The paper is organized as follows. In Section 2, first we de-
rive the analytical transfer function of an inhomogeneously
broadened atomic medium (AM) due to a sequence of one-
dimensional temporal pulses. Then, we develop the three-
dimensional transfer function of the system. In Section 3,
we present simulation results showing that the analytical model
agrees well with the results obtained by solving the SE.
Concluding statements are made in Section 4.

2. ANALYTICAL MODEL OF THE RESPONSE OF
A RESONANT MEDIUM

To illustrate the basic tenets of the nonlinear response of a res-
onant medium, consider, for example, an AM (e.g., a hot vapor
cell) with specified extents in the x–y plane and negligible
thickness in the z-direction. We assume further that it has sig-
nificant inhomogeneous broadening and a finite granularity in
the x–y plane. Under these assumptions, the three-dimensional
space occupied by this medium in the STFT domain can be
represented by a volume, such as the one in Fig. 1(a). Here,
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kx and ky are the spatial frequencies, and ω is the temporal fre-
quency. The actual shape of this volume would, of course, de-
pend on the nature and extent of the inhomogeneous
broadening and the size and the granularity of the medium
in the x–y plane. Next, consider the corresponding representa-
tion of a pulsed optical field in the paraxial limit. In Fig. 1(b),
we show an arbitrary lump as the representation of this field in
the STFT domain. Again, of course, the actual shape of this
lump would depend on the spatial and temporal properties
of this pulse.

Consider now an arbitrary volume element of the STFT
representation of the field. In general, this volume element will
interact with the whole volume of the STFT representation of
the medium. However, limited by a very small volume element,
the power in this element is so small that one can make the
resonant excitation approximation (REA). Explicitly, the
REA means we consider only the interaction between volume
elements that have the same coordinates at the center. This en-
ables us to determine a transfer function for each volume
element of the excitation field. The overall response can then
be found by simply integrating the transfer function over the
volume of the STFT representation of the field and the spectral
distribution of the atoms.

As we have noted above, the quantum mechanical equation
of evolution is simply the SE if dissipative processes are negli-
gible. An important example of such a situation occurs when
optically off-resonant two-photon (Raman) excitations are ap-
plied to a Λ-type system [13,14]. As has been shown, such a
system can be modeled as a dissipation-free two-level system. In
this case, we will show that an analytical expression for the
transfer function can be found. In a more general case, where
the dissipation cannot be ignored, one must use the Liouville
equation for the density matrix. In such a case, the transfer
function itself has to be determined numerically, as described
in more detail later. Nonetheless, it would still allow compu-
tation at a rate that is orders of magnitude faster than direct
numerical integration. In this paper, we focus our discussion
on the case where an analytical expression for the transfer func-
tion can be found.

To keep the exposition of the basic feature of the analysis
simple, we first consider a field that corresponds to a delta func-
tion in the spatial frequency domain and has a spread in the
temporal frequency domain only. A specific example of such

a field is shown in Fig. 1(c), consisting of three pulses, with
infinite and uniform spatial extents in the x- and y-directions.
We assume that the AM has inhomogeneous broadening cen-
tered at frequency ωL, with a width that is significantly larger
than the spectral width of each of the three pulses.
Furthermore, we assume that the carrier frequencies of these
pulses are also ωL. Let us assume further that each of the last
two pulses is a so-called π∕2 pulse, meaning that, by itself, each
pulse would create an equal superposition of the ground and
the excited state of an atom with a resonance frequency of
ωL, starting in the ground state. In that case, this pulse se-
quence corresponds to the so-called stimulated photon echo
[15,16] (SPE) process. Specifically, the response of the AM gen-
erates the echo pulse, which is a temporally mirrored version of
the first pulse. The SPE process can be viewed as a temporal
correlator (TC) [17–19], with the echo pulse representing the
correlation peak. We denote the three temporal signals as A�t�,
B�t�, and C�t�. More explicitly, these functions represent the
complex envelope of the electric field amplitude, with a
central frequency of ωL. Explicitly, we can write EQ�t� �
Q�t� exp�i�ωLt − kz�� � cc � jQ�t�j exp�iϕQ�, where
Q � A; B; C .

After applying the rotating wave approximation and the ro-
tating wave transformation [13] (which is augmented to trans-
form out the common phase factor kz as well), the effective
Hamiltonian for each of these fields can be expressed as
HQ�t�∕ℏ�ωj2ih2j�ΩQ�t�∕2j1ih2j�Ω�

Q�t�∕2j2ih1j, where
the complex and time-dependent Rabi frequency for each
field is given by ΩQ�t� � μQ�t� � jΩQ�t�j exp�iϕQ�;
�Q � A; B; C�, with μ being the dipole moment of the
two-level atom, and the detuning of the center frequency of
the laser (ωL) from the resonance frequency of the atom
(ωAtom) being defined as ω ≡ ωAtom − ωL.

As shown in Fig. 1(c), the three temporal signals have finite
durations in time and are separated from one another.
Specifically, we assume that the three signals, A, B, and C , ar-
rive at the AM at t � T 1, T 2, and T 3, respectively. Therefore,
the Rabi frequencies seen by the AM can be expressed as
Ωq�t� � μq�t� � jΩq�t�j exp�iϕQ�; �Q � A;B;C ;q� a; b; c�,
where a�t� � A�t −T 1�;b�t� � B�t −T 2�; c�t� � C�t −T 3�.
Before proceeding further, we define explicitly the time domain
Fourier transform (FT), g̃�ω�, of a function g�t� as
g̃�ω� � �1∕ ffiffiffiffiffi

2π
p � R∞

−∞ g�t� exp�iωt�dt . From this definition,
it then follows immediately that Ω̃a�ω� � μã�ω� �
μÃ�ω� exp�iωT 1�; Ω̃b�ω� � μb̃�ω� � μB̃�ω� exp�iωT 2�;
Ω̃c�ω� � μc̃�ω� � μC̃�ω� × exp�iωT 3�.

In the time domain, the atoms see the pulses at different
times. However, the equivalent picture in the frequency do-
main is that the atoms see the Fourier components of all
the pulses simultaneously during the time window within
which all three pulses are present. Thus, for t ≥ T 3, the re-
sponse of the AM can be computed by assuming that it has
interacted with all the fields simultaneously. To evaluate this
response, we denote first asN �ω� the distribution of the atomic
frequency detunings (i.e., the inhomogeneous broadening).
Thus, the quantity N �ω�dω represents the number of atoms
that have detunings ranging from ω − Δω∕2 to ω� Δω∕2,
representing a spectral band of very small width Δω. In the

Fig. 1. STFT representation of (a) the AM and (b) the three-dimen-
sional electric field. (c) Sequence of pulses in the SPE process.
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spectral domain view, a good approximation (the REA) to make
is that the atoms interact only with those components of the
field that are resonant with the atoms within a small band, jus-
tified by the fact that the spectral component within a vanish-
ingly small band is very small. Thus, the SE for the amplitude
of this band of atoms, in the rotating wave frame, is given by
∂
∂t

�
C1�ω�
C2�ω�

�
� −i

�
0 Ω̃ 0�ω�∕2

Ω̃ 0��ω�∕2 0

��
C1�ω�
C2�ω�

�
; (1)

where the net, complex Rabi frequency within this band is
given by Ω̃�ω� � Ω̃a�ω� � Ω̃b�ω� � Ω̃c�ω� � μ�ã�ω��
b̃�ω� � c̃�ω�� ≡ jΩ̃�ω�j exp�iϕ�ω��, and we have defined
Ω̃ 0�ω� ≡ Ω̃�ω�Δω.

The conditions under which the approximation underlying
Eq. (1) is valid are as follows. If the optical fields are applied for
a duration of T , then it has a spectral width of the order of
∼1∕T . Let us denote by Ω the peak Rabi frequency in the time
domain. Thus, the strength of the Rabi frequency causing the
resonant excitation for each of these bands of atoms is
∼Ω · Δω · T . Consider now the excitation of one band by
the component of the fields that are detuned by a frequency
Δω. If we assume the condition thatΩ · T ≪ 1, then it follows
that Ω · Δω · T ≪ Δω. The peak amplitude of the excited
state due to this detuned excitation is then given approximately
by the ratio of the effective Rabi frequency to the detuning,
which is Ω · T . Thus, it follows that the REA underlying
Eq. (1) is valid as long as Ω · T ≪ 1, which is assumed to
be the case for the system under consideration in this paper.
We also note that such an approach for describing the evolution
in bands has been employed in other contexts as well; see, for
example, Refs. [20,21].

Assuming that all the atoms are in the ground state before
the first pulse is applied, the solution for this equation,
physically valid for t ≥ T 3, is given by C1�ω� �
Cos�jΩ̃ 0�ω�jt∕2�;C2�ω� � −i Sin�jΩ̃ 0�ω�jt∕2� exp�−iϕ�ω��.
The amplitude of the electromagnetic field produced by the
atoms in this band is proportional to the induced dipole mo-
ment, which, in turn, is proportional to the induced coherence,
given by
ρ12�ω; t�
� C1C�

2 exp�−iωatomt� � C1C�
2 exp�−iωLt − iωt�

� �i∕2� exp�−iωLt� Sin�jΩ̃ 0�ω�jt� exp�−iωt� exp�iϕ�ω��:
(2)

As we argued above, the component of the Rabi frequency
within a very small band is very small, so we can make use of the
approximation that Sin�θ� ≈ θ − θ3∕6. Noting that the inter-
action occurs for a time window of duration T ≈ T 3 − T 1,
we can thus write that ρ12�ω; t� ≈ �i∕2� exp�−iωLt�×
�Ω̃ 0�ω�T − jΩ̃ 0�ω�j2Ω̃ 0�ω�T 3∕6� exp�−iωt�. The signal
(i.e., the electric field) produced by all the atoms can be
expressed as

Σ�t� � α exp�−iωLt�
Z

∞

−∞
dωN �ω��Ω̃�ω�T

− jΩ̃�ω�j2Ω̃�ω�T 3∕6� exp�−iωt�; (3)

where the proportionality constant, α, depends on the dipole
moment of the two-level atom and the density of the AM. To

extract the essential result, we assume that the width of
the atomic spectral distribution is very large compared to that
of Ω̃�ω�, so N �ω� can be replaced by a constant, N .
Furthermore, we define Σ 0�t� � Σ�t� exp�iωLt� as the
envelope of the signal centered at the laser frequency, and
β � −αN , so we can write

Σ 0�t�� β

Z
∞

−∞
dω�jΩ̃ 0�ω�j2Ω̃ 0�ω�T 3∕6− Ω̃ 0�ω�T �×exp�−iωt�:

(4)
Note that the time-dependent value of the off-diagonal den-

sity matrix element ρ12�t�, integrated over all atoms, is simply
proportional to this signal, ρ12�t� � ξΣ�t�, where ξ is a
proportionality constant. This, of course, is proportional to
the density matrix element in the rotating wave frame

ρ̃12�t� ≡ ρ12eiωLt � ξΣ�t�eiωLt : (5)

The linear terms in Eq. (3) represent the so-called free-in-
duction decay, which occurs immediately after each pulse leaves
the AM, as can be shown easily, and does not contribute to the
correlation signal. Since the net Rabi frequency has three com-
ponents corresponding to the three pulses, there will be a total
of twenty-seven components corresponding to the nonlinear
term. However, some of these terms are identical to one an-
other, except for the numerical coefficients, leading to eighteen
distinct terms. These are illustrated in Fig. 2, where the coef-
ficient in front of each term indicates the number of times it
occurs. These terms can first be divided into two categories:
causal and acausal. The acausal terms occur at a time that is
earlier than the time of application of at least one of the three
constituent input signals. To eliminate the appearance of such
acausal terms, it is necessary use Laplace transforms rather than
FTs in formulating the frequency domain analysis, a fact well
known in the field of signal processing [22]. However, for the
problem we are considering here (namely, the spatio-temporal
correlator; STC), it is essential to use FTs in the spatial domain.
In order to elicit and exploit the unified view of the STC as a
device that adds the temporal dimension to the spatial ones
with essentially identical notations and interpretations, we
are forced to make use of the FT for the temporal dynamics.

Fig. 2. List of nonlinear terms from third-order expansion. (a) The
causal terms. (b) The acausal terms [Group A: causal and appearing at
t ≤ T 3; Group B: acausal; Group C: causal and appearing at t > T 3].
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This approach is fully valid as long as it is understood that the
acausal terms that appear due to the use of the FT are unphys-
ical and must be discarded while determining the actual re-
sponse of the system.

The causal category can be broken up into two groups: those
appearing at t ≤ T 3, and those appearing after t > T 3. For
reference, we thus have three different groups of signals, desig-
nated as follows: GroupA: Causal and appearing before or atT 3;
Group B: Acausal; and Group C: Causal and appearing afterT 3.
This grouping is indicated in the caption of Fig. 2. In grouping
these terms, we have assumed that �T 2 − T 1� < �T 3 − T 2�.
Under the assumptions made here in deriving these results,
the only physicallymeaningful terms are those inGroupC, since
we are calculating the response of the atoms to the combined
field of all three pulses. These correspond to inverse FT of
ã�b̃ c̃; b̃� c̃2; ã� c̃2, appearing at time t � −T 1 � T 2 � T 3,
t � −T 2 � 2T 3, and t � −T 1 � 2T 3. The term that
corresponds to the desired correlation signal is ã�b̃ c̃ .

We now consider explicitly the signal produced by the
term ã�b̃ c̃ . It can be expressed as Σ 0

C �t� � �ζμ3∕6�×R
∞
−∞ dω�ã��ω�b̃�ω�c̃�ω�� exp�−iωt�, where ζ ≡ β�TΔω�3.
For simplicity, we now define the normalized signal as
σ�t� ≡ Σ 0

C

ffiffiffiffiffi
2π

p � 6∕�ζμ3�, so we can write σ�t� �
�1∕ ffiffiffiffiffi

2π
p � R∞

−∞ dω�ã��ω�b̃�ω�c̃�ω�� exp�−iωt�. It then follows
that the FT of the normalized correlation signal is

σ̃�ω� � ã��ω�b̃�ω�c̃�ω�
� Ã��ω�B̃�ω�C̃�ω� exp�jω�T 3 � T 2 − T 1��: (6)

If we define S̃�ω� � Ã��ω�B̃�ω�C̃�ω�, then it follows that
S�t� is the cross-correlation between A�t� and the convolution
of B�t� and C�t�. Since A�t� is essentially a delta function in
time, S�t� is effectively the convolution of B�t� and C�t�.
Explicitly, if we consider A�t� � A0δ�t�, we get S�t� �
Ao

R
∞
−∞ B�t 0�C�t − t 0�dt 0. If we take into account the finite

temporal width of A�t�, this signal S�t� will be broadened
by this added width. Finally, we note that σ�t� �
S�t − �T 3 � T 2 − T 1��, which means that this correlation sig-
nal occurs at t � T 3 � �T 2 − T 1�, as already noted above.
Here, we have used an idealized, decay-free two-level system
of atoms with inhomogeneous broadening that is larger than
the inverse of the temporal resolution of the data stream. As
stated earlier, it can be shown that an off-resonant excitation
in a three-level system is equivalent to this model [13,14].

3. SIMULATION RESULTS AND DISCUSSION

Now we compare the simulation results of the numerical model
and the analytical model and verify that both models give es-
sentially the same results. Figure 3(a) shows the sequence of
pulses associated with the TC, where a short pulse a�t� is ap-
plied as the writing beam at time T 1, followed by the query
pulse train b�t� at time T 2. At time T 3, the reference pulse
train is applied to this memory. The correlation peak is ob-
served in a temporally shift-invariant manner at time
t � −T 1 � T 2 � T 3. The temporal correlation process de-
scribed above is simulated using the quantum mechanical
amplitude equation [13,14], and the result is shown in
Fig. 3(b). The simulation of the atomic model has been

performed in a supercomputer for faster calculation. In addition
to the correlation term, other nonlinear terms appear in the
simulation; these have been discussed above. In the simulation
of a TC using the numerical model in Fig. 3(b), we see that the
terms in Group C appear at times t � −T 1 � T 2 � T 3,
t � −T 2 � 2T 3, and t � −T 1 � 2T 3. Here, the desired cor-
relation signal, which is denoted as s�t�, corresponds to the term
ã�b̃ c̃ , and it appears at time t � −T 1 � T 2 � T 3, as
expected. It should be noted that there is a signal that appears
at time t � −T 1 � 2T 2. Since it appears before t � T 3, it is
of no interest for the temporal correlation process.

To simulate the analytical model, it is necessary to modify
the transfer function of Eq. (6) by adding the additional
nonlinear terms of Group C. Thus, the modified version of
the transfer function can be expressed as

σ̃�ω� � 2ã��ω�b̃�ω�c̃�ω� � b̃��ω�c̃2�ω� � ã��ω�c̃2�ω�;
(7a)

σ�t� � IFTfσ̃�ω�g; for t > T 3; (7b)

where the three terms correspond to Group C. The quantity
σ�t� is proportional to the signal produced by the system
for t > T 3, under the simplifying assumption that the inhomo-
geneous broadening is much larger than the spectral spread of
the terms in Eq. (7a). It can be shown that this term is propor-
tional to ρ̃12�t�, the off-diagonal density matrix element in the

Fig. 3. (a) Pulse train associated with the TC. (b) Simulation results
of a TC using the numerical model, and (c) the analytical transfer
function model. (A.U., arbitrary unit.)
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rotating-wave basis. In Fig. 3(c), we have shown that imple-
menting the transfer functions of Eq. (7) essentially yields
the same result as the numerical model (for t > T 3, which
is the relevant time span for the correlator), but at a faster sim-
ulation time. Note that the other nonlinear terms appearing in
this case do not interfere with the final correlation signal.

The architecture for the AER system based on an STC is
similar to that of a conventional spatial holographic correlator
[10,23,24], except that the write pulse is replaced by a plane
wave of a certain duration in space and time. The recording
medium is replaced by the inhomogeneously broadened
AM. The laser beam is directed to the reflection-mode spatial
light modulator (SLM) with a polarizing beam splitter. The
SLM reflects a pattern of light that is orthogonally polarized
so it passes through the same beam splitter. The pattern pro-
duced by the SLM is controlled by the signals applied to it. The
lens after the SLM produces the two-dimensional spatial FT of
the SLM pattern in the plane of the AM. Similarly, the second
lens produces the two-dimensional spatial FT of the field,
generated by the AM, in the plane of the detector array. A sim-
plified architecture of the STC is shown in Fig. 4. Here, the
signals are generated by modulating the field from a laser with
an SLM, for example. We now have three functions containing
information: A�x; y; t�, B�x; y; t�, and C�x; y; t�, where �x; y�
are the rectilinear spatial coordinates in the plane of the
SLM. The corresponding signals in the plane of the AM are
FT’d in the spatial domain due to the first lens. The signals
A�x; y; t�, B�x; y; t�, and C�x; y; t� are retrieved from the
SLM at times T 1, T 2, and T 3, respectively. We also allow
for the situation where each frame might be shifted from
the center by an amount �xj; yj�. The corresponding Rabi
frequencies in the three-dimensional spectral domain can
be expressed as Ω̃q�kx; ky;ω� � ζμQ̃�kx; ky;ω� exp�ikxxq�
exp�ikyyq� exp�iωT q�; �q � a; b; c;Q � A; B; C �, where
a�x; y; t� � A�x − xa; y − ya; t −T 1�;b�x; y; t� � B�x − xb; y − yb;
t −T 2�; c�x; y; t� � C�x − xc ; y − yc ; t − T 3�. Thus, the SE for
the amplitude in the rotating-wave frame is given by

∂
∂t

"
C1�kx; ky;ω�
C2�kx; ky;ω�

#
� −i

"
0 Ω̃�kx; ky;ω�∕2

Ω̃��kx; ky;ω�∕2 0

#

×

"
C1�kx; ky;ω�
C2�kx; ky;ω�

#
; (8)

where the net, complex Rabi frequency within this band
is given by Ω̃�kx; ky;ω� � Ω̃a�kx; ky;ω� � Ω̃b�kx; ky;ω��
Ω̃c�kx; ky;ω� � μ�ã�kx; ky;ω� � b̃�kx; ky;ω� � c̃�kx; ky;ω��.
Here, we are making a more generalized form of the REA.
Specifically, we are assuming that the atoms in the STFT do-
main volume element �kx − Δkx∕2; ky − Δky∕2;ω − Δω∕2� →
�kx � Δkx∕2; ky � Δky∕2;ω� Δω∕2� interact only with
those components of the field that occupy the same volume
element. Using the same line of argument and making use
of the same set of approximations as presented for the temporal-
only case, we then conclude that the normalized signal in the
plane of the detector array corresponding to the correlation sig-
nal is given by

σ�xs; ys; t� �
1

�2π�3∕2
Z

∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

−∞
dω�Ã��kx; ky;ω�

× B̃�kx; ky;ω�C̃�kx; ky;ω� exp�ikx�x3 � x2 − x1�
� iky�x3 � x2 − x1�� exp�iω�T 3 � T 2 − T 1���
× exp�−i�kxxs � kyys � ωt��: (9)

If we consider no shift in the spatial direction, i.e., xq �
yq � 0 where q � a; b; c, then it follows that the three-dimen-
sional FT of the normalized correlation signal is

σ̃�kx; ky;ω� � Ã��ω�B̃�ω�C̃�ω� exp�iω�T 3 � T 2 − T 1��:
(10)

If we define S̃�kx; ky;ω� � Ã��kx; ky;ω�B̃�kx; ky;ω�
C̃�kx; ky;ω�, then we see that S�xs; ys; t� is the three-
dimensional cross-correlation between A�x; y; t� and the
three-dimensional convolution of B�x; y; t� and C�x; y; t�.
Since A�x; y; t� is essentially a delta function in both the tem-
poral and spatial domains (i.e., it is a very short temporal pulse
and is a small point signal at the center of the SLM plane),
S�xs; ys; t� is effectively the three-dimensional convolution of
B�x; y; t� and C�x; y; t�. Explicitly, if we consider A�x; y; t� �
A0δ�x�δ�y�δ�t�, we get S�xs; ys; t� � Ao

R
∞
−∞ dt 0

R
∞
−∞ dx 0R

∞
−∞ dy 0B�x 0; y 0; t 0� × C�xs − x 0; ys − y 0; t − t 0�. Finally, we note
that σ�xs; ys; t� � S�xs; ys; t − �T 3 � T 2 − T 1��, which means
that this correlation signal occurs at t � T 3 � �T 2 − T 1� in
the plane of the detector array.

Figure 5 shows the limiting case of the STC where the query
event and the database event are each a single frame, and they
match exactly in the spatial domain. Specifically, the write
pulse, A�x; y; t�, is applied (centered) at t � T 1. In the time
domain, it is a π∕2 pulse, while spatially, it is a Gaussian spot
(centered) at x � 0; y � 0. The query image, B�x; y; t�, is ap-
plied (centered) at t � T 2, and the reference image C�x; y; t� is
applied (centered) at t � T 3. As expected, a correlation peak
appears at t � T 2 � T 3 − T 1. Here, we can see that the
numerical and the analytical models yield essentially identical
results, but at a faster simulation time. The numerical model is
simulated using a parallel computer [25–27] with 20 process-
ors, whereas the analytical model is simulated using a single
processor (Intel Core I7-4600U CPU at 2.1 GHz).
However, the simulation time of the analytical model is
∼105 faster than the numerical model. Both models also show
additional signals appearing at different times, corresponding to
the additional nonlinear interactions, similar to the results

Fig. 4. Simplified architecture of the STC. (SLM, spatial light
modulator; AM, atomic medium; DET, detector.) See text for details.
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shown in Fig. 3. Here, for clarity, we have shown only the cor-
relation signals and excluded these additional signals.

From the above simulation results, it is obvious that the
numerical model and the analytical model are in good agree-
ment with each other. Hence, we can use the analytical model
reliably for simulating a three-dimensional STC. Figure 6
shows the simulation result of the STC using the analytical
model [Eq. (10)], where the query event B�x; y; t� contains
three frames, and the reference event C�x; y; t� contains nine
reference frames. The writing frame, A�x; y; t�, and the query
frames, B�x; y; t�, are centered at t � T 1 and t � T 2, respec-
tively. The section of the reference event that matches the query
event is shown in the dotted box in C�x; y; t�, which is centered
at t � T 3. As expected, a correlation peak appears at t � T 2 �
T 3 − T 1 in the S�x; y; t� signal.

So far, we have only considered a situation where the quan-
tum state evolution can be described by the deterministic SE.
However, for a system that involves non-negligible decay and
irreversible dephasing, it is necessary to make use of a stochastic
description. The density matrix equation of evolution for such a

system in general may not have an analytical solution as a func-
tion of time. In order to apply the technique proposed here to a
such a system, we can employ the following approach. First, we
develop a set of density matrix equations for each small spectral
band in the STFT domain, analogous to Eq. (8), by employing
the REA. In order for theREA to be valid, thewidth of each band
has to be of the order of the homogeneous linewidth of the sys-
tem. These equations, for each band, are then solved numerically
in the time domain for the element of the density matrix that
corresponds to the dipole moment of interest. For concreteness,
consider the case of a damped two-level optical transition. In this
case, the density matrix element of interest is ρ12�kx; ky;ω�, and
the numerical solution would yield the temporal evolution
of this element: ρ12�kx; ky;ω; t�. The desired response of the
system is then found simply by integrating this quantity over
the STFT domain and the spectral distribution of the
atomic density: ρ12�t� �

R
dωdkxdkyN �ω�ρ12�kx; ky;ω; t�.

Computationally, this approach would be somewhat slower than
an SE-based system. However, it would still be much faster than
the brute-force approach of integrating over all atomic locations
and frequencies. Broadly speaking, this approach is thus
expected to be convenient for any situation involving the quan-
tum evolution of a system in time and three spatial dimensions
simultaneously.

4. CONCLUSION

To summarize, we have developed an analytical model to find
the nonlinear response of a resonant medium due to an applied
field by employing the STFT-domain-based transfer function.
We started with deriving the one-dimensional transfer function
of an inhomogeneously broadened AM under the REA. Then,
we developed the three-dimensional transfer function and
showed that the analytical model agrees closely with the results
obtained via an explicit simulation of the atomic response but
at a speed faster than the analytical model. As a practical exam-
ple of the analytical model, we showed that it can be used to
model the STC at a speed that is many orders of magnitude
faster than solving the SE. Finally, we also outlined how a varia-
tion of this approach can be employed for efficient computa-
tion in a system that requires the density matrix equations for
the evolution of the nonlinear medium.
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