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Recently, we proposed an optically pumped five-level gain with electromagnetically induced trans-
parency system, which has a transparency dip superimposed on a gain profile and exhibits a negative
dispersion suitable for the white light cavity enhanced interferometric gravitational-wave detector [Phys.
Rev. D 92, 082002 (2015)]. Using this system as the negative dispersion medium in the white light cavity
signal-recycling scheme, we get an enhancement in the quantum noise limited sensitivity–bandwidth
product by a factor of ∼18. We have also shown how to realize such a system in practice using Zeeman
sublevels in 87Rb at 795 nm [Opt. Commun. 402, 382 (2017)]. However, the Advanced Laser
Interferometric Gravitational-Wave Observatory (aLIGO) operates at 1064 nm, and suitable transitions
in Rb or other alkali atoms are not available at this wavelength. Therefore, it is necessary to consider a
system that is consistent with the operating wavelength of aLIGO. Here, we present the realization of such a
negative dispersion medium at 1064 nm with a microresonator, which supports optomechanical interaction.
A strong control field is applied at a higher frequency, and, under certain conditions, a probe field at a lower
frequency experiences a peak at the center of an absorption profile and a negative dispersion in the
transmission. Unlike in the gain with electromagnetically induced transparency case, we use the
compound-cavity signal-recycling scheme, in which an auxiliary mirror is inserted in the dark port of
the detector, and show that the enhancement factor can be as high as ∼15. However, using the parameters
required for the sensitivity enhancement, the optomechanical system enters an instability region where the
control field is depleted. We present an observer-based feedback control process used to stabilize the
system.

DOI: 10.1103/PhysRevD.98.022003

I. INTRODUCTION

Previously, we proposed an interferometric gravitational-
wave (GW) detector using a white light cavity [1–8] for
signal recycling in the advanced Laser Interferometric
Gravitational-Wave Observatory (aLIGO). The key
element in the white light cavity is a negative dispersion
medium (NDM), used to compensate the phase variation
due to the change in frequency in the arm cavities,
including optomechanical effects. One way to realize such
a NDM makes use of nondegenerate Zeeman sublevels in
cold 87Rb atoms [9]. The resulting susceptibility shows a
transparency dip on top of a gain profile [gain with
electromagnetically induced transparency (GEIT)] and a
negative dispersion suitable for the phase compensation.
However, application of the 87Rb-based GEIT system to
aLIGO has several drawbacks. First, the 87Rb GEIT system
operates at 795 nm, different from the operating wave-
length of current LIGO at 1064 nm. The prospect of a
future GW detector operating at 795 nm is, to the best of

our knowledge, not being envisioned by anyone. Second,
the Rb-GEIT process requires cold atoms and a rather large
density-length product of 1.25 × 1018 m−2, which is a
challenging requirement to meet experimentally.
In this paper, we describe a realization of the NDM that

operates at 1064 nm using an optomechanical resonator. In
Sec. II, we describe and theoretically model an optome-
chanical resonator system that produces a negative
dispersion at 1064 nm, while adding minimal noise,
similar to the case for GEIT. In Sec. III, we analyze
the quantum noise (QN) of the optomechanical system and
calculate the QN limited sensitivity of the aLIGO appa-
ratus incorporating this system as the NDM in the signal
recycling cavity using the Langevin noise operator model.
In Sec. IV, we discuss the stabilization of the system. In
Sec. V, we summarize the results. In Appendix A, we
discuss some details of the observer-based feedback
control. In Appendix B, we describe a triangular optical
cavity that can be used as the beam splitter/combiner for
incorporating the optomechanical system in the aLIGO
apparatus.*shahriar@northwestern.edu
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II. NDM USING THE OPTOMECHANICAL
RESONATOR

We introduce below an optomechanical system, in which
two optical modes couple to a mechanical mode. As shown
in Fig. 1, a microsphere resonator that supports optome-
chanical interaction is coupled to a tapered optical fiber.
The resonator hosts two optical modes â1 and â2 at
frequencies ωC1 and ωC2, respectively. The two optical
modes are coupled to an acoustic phonon mode b̂ of
frequency ωm ¼ ωC2 − ωC1, mediated by Brillouin scatter-
ing [10–12]. A probe field ŝ1;IN at the frequency of ω1 and a
control field ŝ2;IN at the frequency of ω2 are sent into the
tapered fiber coupler. The probe field excites the lower-
energy optical mode â1, while the strong control field
excites the higher-energy optical mode â2. The outputs
from the waveguides are ŝ1;OUT and ŝ2;OUT. As we will see
later, the amplitude of the control field determines the
strength of the optomechanical coupling, and the probe
field experiences an absorption with a narrow transparency
window in the transmission profile.
Previously, the Brillouin scattering induced transparency

(BSIT) was observed experimentally in the optomechanical
system similar to the configuration shown in Fig. 1, in
which the control field excites the lower-energy optical
mode and the probe field excites the higher-energy optical
mode [12]. In contrast with the slow light effect in BSIT, we
observe here a negative dispersion and a fast light effect. In
analogy to the physical intuition of BSIT [12], such a
transparency can be described qualitatively as follows. Let
us denote by np and nm the number of probe photons and
the number of phonons, respectively, as indicated sche-
matically in Fig. 1(b). Consider now two photon-phonon
dual Fock states, one represented as jnp; nmi and the other
as jnp; nm − 1i. The coupling of a probe photon into the
resonator leads to a transition from jnp; nmi to
jnp þ 1; nmi. On the other hand, the Stokes scattering of

the control field results in the transition from jnp; nm − 1i
to jnp þ 1; nmi. We can define the dark state and
the bright state as jDi≡ ½Ω1jnp;nm−1i−Ω2jnp;nmi�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

1þΩ2
2

p
and jBi≡ ½Ω2jnp; nm − 1i þ Ω1jnp; nmi�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
1 þ Ω2

2

p
, respectively, where Ω1 (Ω2) is the rate at

which jnp; nmi (jnp; nm − 1i) couples to jnp þ 1; nmi.
The bright state couples strongly to jnp þ 1; nmi, which
then decays back to both bright and dark states. On the
other hand, the dark state is fully decoupled from
jnp þ 1; nmi. This process leads to a steady-state situation
in which only the dark state is populated, thus producing
the transparency. We emphasize that this interpretation is
only qualitative, since a complete interpretation of the
transparency in terms of these dual Fock states requires a
Monte Carlo simulation, due to the large number of such
states involved. Such a simulation is beyond the scope of
this paper and will be carried out in the future. However,
we note that the analysis shown below, using Heisenberg
operators for the photons and the phonons inside the
resonator, produces a transparency for the probe, consistent
with this qualitative interpretation.
The optomechanical Hamiltonian is given by [13]

Ĥ ¼ ℏωC1â
†
1â1 þ ℏωC2â

†
2â2 þ ℏωmb̂

†b̂þ ĤINT1 þ ĤINT2;

ð1Þ

where ĤINT1 represents the interaction between the two
optical modes inside the resonator and the phonon mode,
while ĤINT2 represents the coupling between the fields
propagating through the fiber and the optical modes inside
the resonator,

ĤINT1 ¼ −ℏðβâ†2â1b̂þ β�b̂†â†1â2Þ; ð2Þ

ĤINT2¼ iℏ
ffiffiffiffiffiffiffi
κEX

p ðâ†1ŝ1;INe−iω1tþ â†2ŝ2;INe
−iω2tÞþh:c:; ð3Þ

where β is the optomechanical coupling rate, κex is the
waveguide-resonator coupling rate, and the time depend-
ence e−iω1t and e−iω2t are separated out from ŝ1;IN and ŝ2;IN.
A unitary transformation, Û ¼ exp½iω1â

†
1â1tþ iω2â

†
2â2tþ

iðω2 − ω1Þb̂†b̂t�, makes the interaction Hamiltonians
time independent and generates the new Hamiltonian
Ĥ0 ¼ Û Ĥ Û† − iℏÛ∂Û†=∂t; written as

Ĥ0 ¼ ℏΔ1â
†
1â1 þ ℏΔ1â

†
2â2 þ ℏΔmb̂

†b̂þ Ĥ0
INT1 þ Ĥ0

INT2;

ð4Þ

where

Δj ¼ ωj − ωcj; j ¼ 1; 2; Δm ¼ ðω2 − ω1Þ − ωm;

ð5Þ

(a) (b)

FIG. 1. Schematic illustration of (a) the negative dispersion
medium using an optomechanical resonator and (b) the Brillouin
scattering analog of electromagnetically induced transparency in
a three-level lambda system, in terms of the photon-phonon dual
Fock states.
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Ĥ0
INT1 ¼ −ℏðβâ†2â1b̂þ β�b̂†â†1â2Þ; ð6Þ

Ĥ0
INT2 ¼ iℏ

ffiffiffiffiffiffiffi
κEX

p ðâ†1ŝ1;IN þ â†2ŝ2;INÞ þ h:c: ð7Þ

Then, we obtain the equations of motion for the field
amplitudes defined as aj ¼ hâji; sj;IN ¼ hŝj;INi; j ¼ 1, 2,

and b ¼ hb̂i as

_a1 ¼ −γ1a1 − iβ�a2b� þ
ffiffiffiffiffiffiffi
κEX

p
s1;IN; ð8Þ

_a2 ¼ −γ2a2 − iβa1bþ ffiffiffiffiffiffiffi
κEX

p
s2;IN; ð9Þ

_b ¼ −γmb − iβ�a�1a2; ð10Þ

where γj ¼ κj=2 − iΔj, j ¼ 1, 2, κj ¼ κ0j þ κEX is the
damping rate for the optical mode aj, and γm ¼ Γ=2 − iΔm.
Here, Γ is the damping rate for the mechanical mode.
The input-output relations, which relate the intraresona-

tor field aj and the input and output fields, are

sj;OUT ¼ sj;IN − ffiffiffiffiffiffiffi
κEX

p
aj; for j ¼ 1; 2. ð11Þ

Since the control field is assumed to be strong and the
dissipation caused by the optomechanical coupling is very
small in comparison, we neglect the second term in Eq. (9).
Solving Eqs. (8)–(10) in the steady state, we get

a2 ¼
ffiffiffiffiffiffiffi
κEX

p
γ2

s2;IN; b ¼ −iβ�a�1a2
γm

; a1 ¼
ffiffiffiffiffiffiffi
κEX

p
γ1 − α

s1;IN;

ð12Þ

where

α ¼ jgj2
γm

� ; g ¼ βa�2: ð13Þ

The effective coupling g can be governed by the control
field a2. Using Eq. (11), we get the transmission of the
probe field,

t1 ≡ jt1jeiθ1 ¼
s1;OUT
s1;IN

¼ 1 − κEX
γ1 − α

: ð14Þ

We consider the case in which the control field s2;IN
is parked on the resonator mode a2 with fixed detuning
Δ2 ¼ 0, i.e., ω2 ¼ ωC2. The wavelength of the optical
mode a1 is chosen to be λ ¼ 1064 nm, corresponding to
the operating wavelength of LIGO, so that ωC1 ¼ 2πc=λ.
The frequency of the probe field is scanned around ωC1,
with detuning Δ1 ¼ ω1 − ωC1. We consider the case in
which ðωC2 − ωC1Þ=ð2πÞ ¼ ωm=ð2πÞ ¼ 1 GHz.
When the phonon decay rate is large, Γ=ð2πÞ ¼ 1 GHz,

we see a gain peak in the transmission of the probe

(Fig. 2), corresponding to Brillouin gain, and a normal
dispersion in the phase response θ1. With a much smaller
phonon decay rate, Γ ¼ 1 Hz, we observe an electromag-
netically induced transparency–like transmission with a
negative dispersion (Fig. 3) [14]. With the choice of
parameters ωC2−ωC1¼ωm, κ0 ¼ κ1 − κEX ¼ 1 Hz, κEX ¼
0.13 MHz, and g ¼ 30 kHz, we plot the results for the
transmission and phase response in Fig. 3.

III. CALCULATING THE QUANTUM NOISE

The optomechanical system we considered in the pre-
vious sections shows a transparency window in the center
of an absorption profile. To analyze the QN from this
system, we use the Langevin noise operator model. The
quantum Langevin equations are written as

_̂a1 ¼ −
�
κ1
2
− iΔ1

�
â1 − iβ�â2b̂

† þ ffiffiffiffiffiffiffi
κEX

p
ŝ1;IN þ ffiffiffiffiffi

κ0
p

f̂1;

ð15Þ

_̂a2¼−
�
κ2
2
− iΔ2

�
â2− iβâ1b̂þ

ffiffiffiffiffiffiffi
κEX

p
ŝ2;INþ ffiffiffiffiffi

κ0
p

f̂2; ð16Þ

_̂b
† ¼ −

�
Γ
2
þ iΔm

�
b̂† þ iβâ1â

†
2 þ

ffiffiffi
Γ

p
f̂†b; ð17Þ

(a) (b)

FIG. 2. (a) The transmissivity jt1j and (b) phase shift Arg½t1� ¼
θ1 as a function of detuning Δ1 ¼ ω1 − ωC1 in the optomechan-
ical resonator when κ0 ¼ κ1 − κEX ¼ 0.5 MHz, κEX ¼ 0.5 MHz,
Γ ¼ 1 GHz, and g ¼ 15 MHz.

(a) (b)

FIG. 3. (a) The transmissivity jt1j and (b) phase shift θ1 as a
function of detuning Δ1 ¼ ω1 − ωC1 in the optomechanical
resonator when κ0 ¼ 1 Hz, κEX ¼ 0.13 MHz, Γ ¼ 1 Hz, and
g ¼ 30 kHz. The insets show the plots on a smaller scale.
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where f̂βðβ ¼ 1; 2; bÞ are the Langevin noise operators [15]
that satisfy the following relation:

hf̂βðtÞf̂†βðt0Þi ¼ ðn̄β þ 1Þδðt − t0Þ;
hf̂†βðtÞf̂βðt0Þi ¼ n̄βδðt − t0Þ. ð18Þ

Here, n̄β is the occupation number of the thermal
reservoir. Since the frequencies of the optical modes are
very high, compared to the thermal frequency (defined as
kBT=ℏ, where kB is the Boltzmann constant and T is the
temperature) even at room temperature, the corresponding
occupation numbers n̄1 and n̄2 can be assumed to be zero.
In general, the phonon mode has nonzero thermal occu-
pation n̄b ≠ 0.
The following conventions are used for Fourier

transforms:

f̂βðωÞ ¼
Z

∞

−∞
eiωtf̂βðtÞdt; β ¼ 1; 2; b: ð19Þ

We can then solve the set of equations in the frequency
domain, which gives

b† ¼ iga1 þ
ffiffiffi
Γ

p
f̂†b

γ�m
; ð20Þ

â1ðωÞ¼
ffiffiffiffiffiffiffi
κEX

p
ŝ1;INðωÞ

γ1− jgj2=γ�m
þ

ffiffiffiffiffiffi
κ01

p
f̂1ðωÞ

γ1− jgj2=γ�m
þ −ig ffiffiffi

Γ
p

f̂†b
γ1γ

�
m− jgj2 ; ð21Þ

where γ�m¼Γ=2þ iðΔm−ωÞ and γ1 ¼ κ1=2 − iðΔ1 þ ωÞ.
Using the input-output relation that

ŝ1;OUTðωÞ ¼ ŝ1;INðωÞ − ffiffiffiffiffiffiffi
κEX

p
â1ðωÞ; ð22Þ

we get that

ŝ1;OUTðωÞ ¼ C1ŝ1;INðωÞ þ C2f̂1ðωÞ þ C3f̂
†
bðωÞ; ð23Þ

where

C1 ¼
�
1 − κEX

γ1 − jgj2=γ�m

�
; C2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ01κEX

p
γ1 − jgj2=γ�m

;

C3 ¼
ig

ffiffiffiffiffiffiffiffiffiffi
ΓκEX

p
γ1γ

�
m − jgj2 . ð24Þ

The spectral density S1;OUTðωÞ of the output field can be
derived using

hŝ1;OUTðωÞŝ†1;OUTðω0Þ þ ŝ†1;OUTðωÞŝ1;OUTðω0Þi
≡ 2πδðω − ω0ÞS1;OUTðωÞ; ð25Þ

which gives

S1;OUTðωÞ ¼ jC1j2S1;INðωÞ þQADD;

QADD ¼ jC2j2 þ jC3j2ð2n̄b þ 1Þ; ð26Þ

where jC1j is essentially the same as the transmissivity jt1j
that we calculated in Eq. (14) and QADD represents the
amount of noise due to the interaction with the pump and
the resonator. We assume a temperature of 30 mK for the
thermal reservoir for the phonon mode, which can be
achieved using a Helium dilution refrigerator. The spectral
shape of QADD using the same parameters of the opto-
mechanical system as those in Fig. 3 is shown in Fig. 4.
The interferometric gravitational-wave detector using a

compound cavity for signal recycling (CC-SR) [1] is
schematically shown in Fig. 5, where the reflectivity of
the SRmirror (MSR) is matched to that of the input test mass
mirror (M1) and the length of the signal recycling cavity
(SRC) is chosen so that the SRC effectively disappears in

FIG. 4. Plot of the noiseQADD as a function of the frequencyΔ1.

FIG. 5. The CC-SR design using the optomechanical system as
the NDM. A negative dispersive medium realized using an
optomechanical ring resonator is inserted in the auxiliary cavity
formed by MAUX and MSR. The control field is sent to an isolator
and then combines with the output from BS by a beam combiner
(G1). The resulting field is coupled to the tapered fiber by a lens.
The output from the tapered fiber is expanded using another lens.
Using a beam splitter (G2), the control field is filtered out. If we
use another control field in the backward direction (from the
detector to BS), we can send the field in through G2, which is then
filtered out by G1.
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aLIGO [16]. We then add an auxiliary mirror (MAUX). To
achieve an enhancement in the QN limited sensitivity–
bandwidth product, we need to use a NDM with a
dispersion compensating the phase variation as the fre-
quency changes and with vanishingly small QN around the
center of the dispersion [8].
For simplicity, we assume that a control field is applied

only in the forward direction [going from the beam splitter
(BS) to the detector]. Therefore, the a2 mode is excited only
in the counterclockwise direction (when looking into the
diagram). This is illustrated schematically in Fig. 6. Since
the probe field excites the clockwise a1 field when
propagating backward in the auxiliary cavity, and this

clockwise field would not couple to the counterclockwise
a2 field, the field in the interferometer would experience a
loss. To make this loss small, we need to use a micro-
resonator that supports very small optical loss, κ0. This
restraint can be relaxed if an optical circulator that has a
very small insertion loss is available. In the following, we
assume the parameters to be κ0 ¼ 1 Hz, κEX ¼ 0.13 MHz,
Γ ¼ 1 Hz, and g ¼ 30 kHz.
To calculate the QN of the CC-SR scheme, we represent

the fields as the amplitudes of the two-photon modes
following the two-photon formalism developed by Caves
and Schumaker [17,18] and derive the input-output relation
between the principal noise input and the signal and noise
output [8]. To calculate the QN due to the absorption and
amplification in the NDM, we use the Langevin noise
operator model. Using the same method as in Sec. III in
Ref. [8], we plot the resulting QN curves of the CC-SR
scheme in Fig. 5. The QN curves for the CC-SR scheme
(shown as the green curves in Fig. 7) stay well below the
standard quantum limit (SQL) line and show an enhance-
ment in the sensitivity-bandwidth product by a factor of
∼15 compared to the curve for the GW detector in the SR
configuration with the highest sensitivity result (shown as a
red dashed curve) predicted by Bunanno and Chen [19].
In practice, to implement such a NDM in the current

aLIGO, we need to use a lens (L1) to couple the output from
the BS to the tapered fiber in Fig. 1 and then use another
lens (L2) to expand the beam. The specific scheme for
incorporating the optomechanical system in aLIGO is
shown in Fig. 5. The control field is sent through an isolator
and then combined with the output from the BS
by a beam combiner (G1). The resulting field is coupled
to the tapered fiber by a lens. The output from the tapered
fiber is expanded using another lens. Using a beam splitter

FIG. 6. Schematic illustration of the fields in the optomechan-
ical system: s1;forward (s1;backward) is the probe field in the forward
(backward) direction, which excites the counterclockwise (clock-
wise) field a1CC (a1C) in the microresonator. For simplicity, we
consider the case in which the control field s2;forward is applied
only in the forward direction, which excites the counterclockwise
field a2CC in the microresonator. In general, we can also apply a
control field s2;backward in the backward direction.

(b)(a)

FIG. 7. (a) Log-log plot of the normalized QN hnðΩÞ=hSQLðγÞ of the CC-SR scheme vs Ω=γ for the first quadrature b1 and second
quadrature b2, following the two-photon formalism developed in Refs. [17] and [18]. Here, hnðΩÞ is the square root of the noise spectral
density for the GW signal at a sideband frequency Ω, and hSQLðγÞ is the standard quantum limit for GW detection at a sideband
frequencyΩ ¼ γ, where γ is the half bandwidth of the arm cavity of the detector. The green curves represent the QN for the CC-SR using
the optomechanical resonator as the NDM. The noise curves with an additional 2 × 10−4 noise (denoted by “NDM, add”) are shown in
black lines. The red curves represent the QN for the GW detector with SR. The noise curve for LIGO and the SQL curve are plotted in
blue. For additional details underlying the notations used here, see, for example, Ref. [8] or [19]. (b) Plot of the enhancement factor
in the sensitivity-bandwidth product as a function of the amount of insertion loss.
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(G2), the control field is filtered out. We assume that the
insertion loss due to the additional optical components can
be minimal, in the range of 0.02% to 0.05%. For the case in
which the additional noise is 0.02%, the resulting curves are
shown in black in Fig. 7, with the enhancement factor
dropping to ∼14. For the case in which the additional noise
is 0.05%, the enhancement factor drops to ∼12 (not shown).
In Fig. 7(b), we show how the factor of enhancement in the
sensitivity-bandwidth product depends on the insertion loss.
For the beam splitter/combiner discussed in

Appendix B, assuming the reflectivities of each of the
partial reflectors to be 99.999% [20], the signal, in the
process of reflection, will experience a loss of 0.001%.
For two stages (input and output of the microresonator),
the total loss would be 0.002%. It is also possible to
make lenses with an antireflection coating such that the
reflection loss on each surface could be as small as
0.005% [21]. Accounting for four lens surfaces, the total
loss would be 0.02%. Similar coating can possibly be
developed for fiber tips as well. Thus, reflection losses
from the input to the taper fiber and its output would
contribute to additional reflection loss of 0.01%.
Combining all these, we get a reflection loss total of
0.03%. Then comes the question of how well a mode can
be coupled into a fiber (coupling out of fiber can safely
be considered to be essentially perfect, except for residual
reflection loss, which we addressed above). If we want to
achieve a net loss of no more than 0.05%, then this
coupling loss needs to be less than 0.02%, or 0.01% on
each side. Producing such a high-efficiency coupling into
the optical fiber is a difficult, but perhaps not insur-
mountable, challenge that needs to be overcome in order
to implement the scheme proposed here with maximum
efficacy.
Another possible concern with the use of the optical

fiber in this manner is that the high-order modes in the dark
port will not couple well into the fiber and be reflected
back to the interferometer. Most of the light scattered from
these modes would not resonate in the arm cavities. Still,
even a residual amount of such backscattering is known to
introduce an unacceptable amount of noise in the obser-
vation band of interest, if the surface causing the back-
scattering is not sufficiently vibration isolated in this band.
We envision a scheme wherein a pinhole will be placed in
front of the optical fiber, in order to minimize the degree of
backscattering. Furthermore, both the pinhole and the fiber
assembly would be isolated from vibration in the obser-
vation band to a degree that would make the effect of the
residual backscattering insignificant.
Finally, we note that the parameters we have chosen

for the microresonator are highly demanding and may be
difficult to realize experimentally given the current state of
the art. For the mechanical modes, the required quality
factor, Qm, is ∼109. There are some publications in the
literature about the prospect of realizing resonators with

such a high quality factor [22,23]. In Ref. [22], the authors
show their experimental result for Qm ∼ 108 at room
temperature and note that this allows one to speculate
that coupling a new generation of resonator to low temper-
ature baths may yield Qm ∼ 109. In Ref. [23], the authors
show from simulation that a strong optical trap allows a
Qm-enhancement factor of ∼1500, which opens up the
possibility of realizing Qm ∼ 109.
The optical quality factor, QOP, we have proposed is

∼3 × 1014, which is indeed much higher than the best
reported to date [24,25]. In both Refs. [24] and [25], QOP ∼
1010 was reported. As noted in Ref. [24], QOP is limited to
this value due to optical loss in the material. For fused silica
used in this work, the optical loss at 633 nm is 7 dB=km,
dominated by Rayleigh scattering (5 dB=km), and the rest
(2 dB=km) is attributable to material absorption. The
Rayleigh scattering is due to thermal and frozen fluctua-
tions in density. Using crystalline material and operating at
extremely low temperatures as proposed in this paper, it
may be possible to suppress Rayleigh scattering strongly.
Even then, it would be necessary to employ a material that
has a much lower material absorption at 1064 nm in
order to realize the high value of QOP proposed here.
We are also working on possible variations of the
proposed scheme that can possibly relax this constraint
significantly.

IV. STABILIZATION OF THE SYSTEM

When we analyze the optomechanical system using
Eqs. (8) and (9), we use the nondepletion approximation
for the control field. Under this approximation, we would
have the steady-state solution:

a1 ¼ −ig�b�=γ1 þ ffiffiffiffiffiffiffi
κEX

p
s1;IN=γ1: ð27Þ

The equation of motion for the phonon mode b is then

_b ¼ −ðγm − jgj2=γ�1Þb − ig�
ffiffiffiffiffiffiffi
κEX

p
s1;IN=γ�1: ð28Þ

With the parameters we used in the results in the
previous sections, we would have γm ≪ jgj2=γ�1, which
causes mechanical instability in the system [13,26]. To
stabilize the system [27], we consider the equations of
motion for the probe mode a1 and the phonon mode b in
the optomechanical system and the gravitational-wave
sideband mode d [8]. Since the mirrors M1 and MSR

effectively disappear for the relevant range of frequencies,
the main interferometer (defined as the system shown in
Fig. 5 without the microresonator and the optical elements
G1, G2, L1, and L2) can be mapped into a two-mirror cavity
[28]. The Hamiltonian for the main interferometer is
[26,28]
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ĤMAIN ¼ ℏðω0 þ ΔMAINÞd̂†d̂þ P̂2

2M
− ℏG0ðd̂† þ d̂ÞX̂

þ X̂FGW þ ĤγMAIN
þ ĤγINS : ð29Þ

Here, ω0 is the carrier frequency, ΔMAIN is detuning of
the mode d away from the carrier, and X̂ and P̂ are the
position and momentum operators, respectively, for the
differential motion of the mirrors. FGWðtÞ ¼ MLḧðtÞ=2 is
the GW force, where M is the mass of M1 and M2. The
parameter G0 is the main interferometer optomechanical
coupling rate defined as G0 ≡ ω0d̄=L, where d̄ ¼
½2ParmL=ðℏω0cÞ�1=2 (which represents the average number
of photons in the arms), with Parm being the circulating
power of the carrier light inside each arm and L being the
length of each arm. ĤγMAIN

accounts for the loss in the main
interferometer, and ĤγINS accounts for the insertion loss
necessary for adding the microresonator. The coupling
between the field d in the main interferometer and the
field a1 in the microresonator can be described by the
Hamiltonian:

ĤINT ¼ ℏωsðd̂†âþ d̂â†Þ: ð30Þ
Here, ωs is the coupling rate [26,29], defined as ωs≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cκEX=2L

p
. As described in Sec. III, we assume the control

field only in the forward direction; therefore, the counter-
clockwise field a1CC, the a2 field, and the phonon mode in
the microresonator are coupled, while the clockwise field
a1C is not coupled to a2 and b. The resulting equations of
motion for the system are

_̂a1CC ¼ −iωSd̂ − κ0
2
â1CC − ig�b̂† þ ffiffiffiffiffi

κ0
p

âth1CC; ð31Þ

_̂a†1CC ¼ iωSd̂
† − κ0

2
â†1CC þ igb̂þ ffiffiffiffiffi

κ0
p

âth†1CC; ð32Þ

_̂a1C ¼ −iωSd̂ − κ0
2
â1C þ ffiffiffiffiffi

κ0
p

âth1C; ð33Þ

_̂a†1C ¼ iωSd̂
† − κ0

2
â†1C þ ffiffiffiffiffi

κ0
p

âth†1C; ð34Þ

_̂b ¼ −Γ
2
b̂ − ig�â†1CC þ

ffiffiffi
Γ

p
b̂th; ð35Þ

_̂b
† ¼ −Γ

2
b̂† þ igâ1CC þ

ffiffiffi
Γ

p
b̂†th; ð36Þ

_̂d ¼ −iωSâ1C − iωSâ1CC − ðγ0MAIN þ iΔMAINÞd̂
þ iG0X̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0MAIN

q
d̂th; ð37Þ

_̂d
† ¼ iωSâ

†
1C þ iωSâ

†
1CC − ðγ0MAIN − iΔMAINÞd̂†

− iG0X̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0MAIN

q
d̂th†; ð38Þ

_̂X ¼ P̂=M; ð39Þ
_̂P ¼ ℏG0ðd̂þ d̂†Þ − FGW; ð40Þ

where γ0MAIN ¼ γMAIN þ γADD. We define the state vector as

x0 ¼ ðâ1CC; â†1CC; â1C; â†1C; b̂; b̂†; d̂; d̂†; X̂; P̂ÞT; ð41Þ
and then we subtract the steady-state value to get

x ¼ x0 − xSS: ð42Þ

We then have the state equation for x,

_x ¼ Ax; ð43Þ

where A is the state matrix,

A≡

0
BBBBBBBBBBBBBBBBBB@

−κ0=2 0 0 0 0 −ig� −iωS 0 0 0

0 −κ0=2 0 0 ig 0 0 iωS 0 0

0 0 −κ0=2 0 0 0 −iωS 0 0 0

0 0 0 −κ0=2 0 0 0 iωS 0 0

0 −ig� 0 0 −Γ=2 0 0 0 0 0

ig 0 0 0 0 −Γ=2 0 0 0 0

−iωS 0 −iωS 0 0 0 −γ0MAIN − iΔMAIN 0 iG0 0

0 iωS 0 iωS 0 0 0 −γ0MAIN þ iΔMAIN −iG0 0

0 0 0 0 0 0 0 0 0 1=MEFF

0 0 0 0 0 0 ℏG0 ℏG0 0 0

1
CCCCCCCCCCCCCCCCCCA

:

ð44Þ
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The open-loop output of the system is

y ¼ Cx; ð45Þ
where C is a 1 × 10 row vector. We choose C ¼
ð0; 0; 0; 0; 0; 0; 1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p
; 0; 0Þ, which in turn implies

that y ¼ ðd̂þ d̂†Þ= ffiffiffi
2

p
. The matrix A has some eigenvalues

in the upper complex plane, which means the system is
unstable. To stabilize the system, we use an observer-based
feedback control (Chap. 9 in Ref. [30]) process, which is
discussed in more detail in Appendix A. This is illustrated
schematically in Fig. 8, in which an estimate of the state x̃ is
fed back via the control input u ¼ Fx̃ in the form

_x ¼ Axþ Bu: ð46Þ

Here, B is a 10 × 1 column vector, and F is a 1 × 10 row
vector representing the feedback gain.
Since the state of the system xðtÞ cannot be measured

directly, we use an estimate x̃ðtÞ of the state xðtÞ determined
by a state observer [30]. The estimate is constructed as [the
same as Eq. (A8) in Appendix A]

_̃x¼Ax̃þBuþKðy− ỹÞ¼ðA−KCÞx̃þBuþKy; ð47Þ

where K is the estimate gain. As shown in Fig. 8, for
constructing the state estimate x̃ðtÞ, we need the output of
an integrator block, which has three inputs: qðtÞ ¼
ðA − KCÞx̃ðtÞ, which is the estimator multiplied by the
matrix ðA − KCÞ, containing the information of the oper-
ating parameters of the system; wðtÞ ¼ BuðtÞ, which is the

input u multiplied by the input matrix B; and zðtÞ ¼ KyðtÞ,
which is the output y multiplied by the estimator gain K.
We choose B to be B ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 1; 0ÞT ,

which corresponds to a situation in which the feedback
signal is applied to the test mass mirrors (M2) of the main
interferometer. In this case, the system is controllable since
the controllability matrix (Sec. 5. 2. 1 in Ref. [30]) Q≡
½B;AB; A2B;A3B;A4B;A5B;A6B;A7B;A8B;A9B� has full
rank of 10 and therefore has a nonzero determinant. The
same is true for the observability matrix (Sec. 5. 2. 2 in
Ref. [30]) O≡ ½C;CA;CA2;CA3;CA4;CA5;CA6;CA7;

CA8;CA9� with the output matrix chosen as C ¼ ð0; 0;
0; 0; 0; 0; 1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; 0; 0Þ.

The parameters such as the decay rate of the phonon and
photon modes, the circulating power of the laser, and the
waveguide-resonator coupling rate need to be determined
first. The corresponding numbers are then encoded in an
electronic circuit to realize the matrix ðA − KCÞ, and the
estimate is multiplied electronically by this matrix to obtain
the first input of the integrator, qðtÞ. The second input,wðtÞ,
of the integrator is the same as the signal fed back to the
original system. The final output of the interferometer,
namely, the signal produced by the balanced homodyne
detector [31], can be expressed as ζðd̂þ d̂†Þ= ffiffiffi

2
p ¼ ζy,

where ζ is a known proportionality constant. Thus, the
value of y is determined by dividing this signal by ζ and
multiplied electronically by the gain factor K to produce
zðtÞ, the third input to the integrator. The choice of initial
condition, x̃ðt0Þ, for the integrator does not affect the
behavior of the estimate, since the error between the state
and the estimate decays to zero for suitably chosen gain K,
as explained in detail in Appendix A. As such, a convenient
choice for the initial condition is simply x̃ðt0Þ ¼ 0. The
output of the electronic integrator gives the estimate of
the system. The electronic output of the estimate is then
multiplied by the feedback gain F to get u and then applied
to the end mirrors of the interferometer as a feedback
signal.
The values for K and F can be chosen so that the

eigenvalues of A − KC and Aþ BF, respectively, are all in
the lower half of the complex plane. Therefore, the values
also depend on the operating parameters of the system. We
choose

F ¼ ð−2.9 × 10−3 þ 6.8 × 10−5i;−2.9 × 10−3 − 6.8 × 10−5i; 83.0þ 1.5 × 104i; 83.0 − 1.5 × 104i; 4.8 × 10−1

þ 3.9 × 10−3i; 4.8 × 10−1 − 3.9 × 10−3i;−2.7 × 10−1 − 2.9 × 10−7i;−2.7 × 10−1

þ 2.9 × 10−7i;−1.0 × 107;−4.9 × 1021Þ ð48Þ

K ¼ ð4.0 × 1012 þ 2.8 × 1014i; 4.0 × 1012 − 2.8 × 1014i;−6.3 × 1025 þ 1.8 × 1023i;−6.3 × 1025

− 1.8 × 1023i; 2.1 × 1014 þ 1.1 × 1021i; 2.1 × 1014 − 1.1 × 1021i; 7.1 × 106 − 5.8 × 1020i; 7.1 × 106

þ 5.8 × 1020i;−2.2 × 109; 1.4 × 1011ÞT ð49Þ

FIG. 8. Schematic illustration of the observer-based controller.
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For this choice of parameters, it is possible to achieve the
result shown in Fig. 7.
The error signal used for the feedback scheme presented

above is proportional to the GW signal. Thus, this feedback
scheme can, in principle, be used to replace the current
servo for controlling the differential arm lengths, and the
GW signal would be extracted from the error signal. In
constructing this feedback scheme, we have not taken into
account the explicit details of the various complex servos
that are already employed in the aLIGO apparatus [16]. It is
likely that if/when the system proposed here is imple-
mented the overall servo system will need to be modified to
some extent.

V. CONCLUSION

We have presented an explicit scheme for realizing a
negative dispersion medium employing an optomechanical
resonator for use in the fast light enhanced compound-
cavity signal-recycling interferometric gravitational-wave
detector. In contrast to the Rb atom–based gain with
electromagnetically induced transparency system proposed
in Ref. [9], which operates at 795 nm, the system proposed
here can be realized at 1064 nm, which is the wavelength
currently used in aLIGO. The NDM makes use of a
microresonator supporting optomechanical interaction, with
a control field applied at a higher frequency than the probe
field. Under proper conditions, the resulting transmission
profile of the probe field shows a peak superimposed on an
absorption profile and a negative dispersion. The CC-SR
scheme using such a NDM achieves a factor of ∼15
enhancement in the quantum noise limited-sensitivity
bandwidth, in which we use the Langevin noise operator
model to take into account the noise from the NDM.
However, using the parameters required for such sensitivity
enhancement, the optomechanical system enters an insta-
bility region, where the control field is depleted. We present
an observer-based feedback control system used to stabilize
the CC-SR system.
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APPENDIX A: ILLUSTRATION OF THE
FEEDBACK CONTROL

We consider the general case in which the state equation
for the system is [30]

_x ¼ Axþ Bu: ðA1Þ

where x is an n × 1 column vector representing the state
vector, A is the n × n state matrix, B is the n ×m input
matrix, and u is an m × 1 column vector representing the
input signal that will be used eventually for feedback. The
output y from the system is a p × 1 column vector,

y ¼ Cx; ðA2Þ

where C is the p × n output matrix. For the system
considered in the main body of the paper, n ¼ 10,
m ¼ 1, and p ¼ 1. The block diagram for such a system
is shown in Fig. 9(a). The derivative _xðtÞ is the sum of two
parts: wðtÞ ¼ BuðtÞ, which is the control input multiplied
by the input matrix, and sðtÞ ¼ AxðtÞ, which is the state
vector multiplied by the state matrix.
When the matrix A has eigenvalues in the upper complex

plane, the system is unstable. To stabilize the system, we
need to use a feedback as the control input. If the state
vector x can be measured directly, we can feed back the
state vector, i.e., u ¼ Fx, as shown in Fig. 9(b), in which F
is an m × n matrix representing the feedback gain [30]. In
this case, Eq. (A2) becomes

_x ¼ ðAþ BFÞx: ðA3Þ

We can choose a proper gain F so that all the eigenvalues of
Aþ BF are in the lower complex plane. However, in some
situations, the state vector cannot be measured directly. In
that case, we need to create an estimate of the state vector,
x̃, which is an n × 1 column vector. With the knowledge of
the matrices A and B and the input u, we can construct the
state estimate electronically as follows [Fig. 10(a)]:

_̃x ¼ Ax̃þ Bu: ðA4Þ

FIG. 9. (a) Block diagram of the open-loop system described in Eqs. (A1) and (A2); (b) Block diagram of the closed-loop system
where u ¼ Fx.
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The state estimate x̃ðtÞ is the output of an integrator block,
the input of which is the sum of two parts: the control input
multiplied by the input matrix, wðtÞ ¼ BuðtÞ, and the state
estimate multiplied by the state matrix, s̃ðtÞ ¼ Ax̃ðtÞ. If the
estimate is exactly the same as the state, i.e., x̃ðtÞ ¼ xðtÞ,
we have s̃ðtÞ ¼ sðtÞ. Therefore, the two input parts for _̃xðtÞ
and _xðtÞ are the same. In Fig. 10(b), we show the closed-
loop system in which the estimate x̃ðtÞ is fed back as the
control input uðtÞ ¼ Fx̃ðtÞ. In this case, we get the closed-
loop equation, i.e., Eq. (A3), since x̃ðtÞ ¼ xðtÞ.
We now discuss the validity of the assumption that

x̃ðtÞ ¼ xðtÞ. From Eqs. (A1) and (A4), the error of the
estimate, defined as eðtÞ ¼ xðtÞ − x̃ðtÞ, evolves as

_e ¼ Ae: ðA5Þ
If we know what the state is at an initial time [i.e., xðt0Þ],
then we can use the same initial condition for the estimate,
x̃ðt0Þ ¼ xðt0Þ. In this case, we have that eðt0Þ ¼ 0, and the
error stays zero, i.e., eðtÞ ¼ 0, so that xðtÞ ¼ x̃ðtÞ. On the
other hand, if eðt0Þ ≠ 0, the error will diverge since A has
eigenvalues in the upper complex plane.
In the case in which xðt0Þ is unknown and we have

eðt0Þ ≠ 0, in order to make the error decay to zero, we need
to modify the estimate by including a term depending on
the error, in a manner in which the equations for the error
become

_e ¼ ðA −UÞe; ðA6Þ

and choose a proper n × n matrix U so that (A-U) has all
the eigenvalues in the lower complex plane. This can be
achieved by incorporating a term, depending on the error, in
the state estimate,

_̃x ¼ Ax̃þ BuþUðx − x̃Þ; ðA7Þ

which means that we need an extra input part for _̃xðtÞ.
However, since xðtÞ is not directly measurable, it is not
possible to create the extra input term, Uðx − x̃Þ, directly.
Instead, we make use of the fact that the output is
proportional (via a matrix) to x: yðtÞ ¼ CxðtÞ. Thus, if
we construct an estimate for the output with the same
matrix proportionality, namely, ỹðtÞ ¼ Cx̃ðtÞ, then we get
y − ỹ ¼ Cðx − x̃Þ. To match dimensionality, we need to
multiply this by another n × p matrix K. Thus, Kðy − ỹÞ ¼
KCðx − x̃Þ ¼ Uðx − x̃Þ, and the equations for the state
estimate now become

_̃x ¼ Ax̃þ Buþ Kðy − ỹÞ ¼ ðA − KCÞx̃þ Buþ Ky:

ðA8Þ

This is equivalent to Eq. (A7) whenU ¼ KC, which means
that the error of the estimate eðtÞ follows Eq. (A6). In this

FIG. 10. Block diagram of (a) the open-loop system and (b) the closed-loop system using the estimate in Eq. (A4).

FIG. 11. Block diagram of (a) the open-loop system and (b) the closed-loop system using the estimate described in Eq. (A8).
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case, with a suitably chosen gainK, the value we use for the
initial condition of the estimate will not affect the
behavior of the estimator since the error eðtÞ will always
decay to zero. The resulting block diagram is shown in
Fig. 11(a). The state estimate x̃ðtÞ is the output of an
integrator block, the input of which is the sum of three
parts: qðtÞ ¼ ðA − KCÞx̃ðtÞ, which is the estimator multi-
plied by the matrix ðA − KCÞ; wðtÞ ¼ BuðtÞ, which is the
input u multiplied by the input matrix B; and zðtÞ ¼ KyðtÞ,
which is the output y multiplied by the estimator gain K.
The initial condition is chosen as x̃ðt0Þ ¼ 0. When
x̃ðtÞ ¼ xðtÞ, the term KCx̃ðtÞ in qðtÞ cancels out zðtÞ,
and we get back to the form in Eq. (A4) [shown in
Fig. 10(a)]. The estimate can be fed back to the input
uðtÞ ¼ Fx̃ðtÞ as shown in Fig. 11(b).
To analyze the behavior of this closed-loop system, we

plug uðtÞ ¼ Fx̃ðtÞ into Eqs. (A4) and (A8) and get the state
equations:

_x ¼ Axþ BFx̃; ðA9Þ

_̃x ¼ KCxþ ðA − KCþ BFÞx̃; ðA10Þ

from which we get the evolution of the estimate error as

_e ¼ ðA − KCÞe: ðA11Þ

We can rewrite Eqs. (A9) and (A11) in the matrix form

�
_x

_e

�
¼

�
Aþ BF −BF

0 A − KC

��
x

e

�
: ðA12Þ

To stabilize the closed-loop system, we need to place
all the eigenvalues of A-KC and Aþ BF in the lower half of
the complex plane, which can be assigned via K and F
provided that the system considered in Eqs. (A1) and (A2) is
controllable (Sec. 5. 2. 1 in Ref. [30]) and observable
(Sec. 5. 2. 2 in Ref. [30]). The pair (A, B) is controllable
when the controllability matrix [30] Q≡ ½B; AB; A2B;…;
An−1B� has full rank of n and therefore has a nonzero
determinant. The pair (A, C) is observable when the observ-
ability matrix [30] O≡ ½C;CA;CA2;…;CAn−1� has full
rank of n.

APPENDIX B: BEAM SPLITTER/COMBINER
USING TRIANGULAR CAVITY

The beam splitter/combiner (G1 and G2) used in Fig. 5
requires a high resolution and can be realized using a
triangular optical cavity as shown in Fig. 12(a).
For the input beam F1, the transmissivity IOUT=IIN and

reflectivity IREF=IIN are

IOUT
IIN

¼
�
1þ 4R

T2
sin2ðω=FSRÞ

�−1
ðB1Þ

IOUT
IIN

¼ 1 −
�
1þ 4R

T2
sin2ðω=FSRÞ

�−1
; ðB2Þ

where the free spectrum range is FSR ¼ c=ðnLÞ, n ¼ 1 is
the index of refraction of the medium inside the triangular
cavity, R and T ¼ 1-R are the reflectivity and transmis-
sivity of the two mirrors in the cavity, and the third mirror
is assumed to be perfectly reflective. The full width half
maximum and the finesse of the triangular cavity are then

FWHM ¼ 2c
πnL

arcsin

�
T

2
ffiffiffiffi
R

p
�
: ðB3Þ

If the mirror reflectivity is taken to be R ¼ 99.999%, the
full width at half maximum is as small as ∼0.9 kHz and the

FIG. 12. (a) Schematic illustration of the triangular optical cavity as the beam combiner. (b) Plot of the transmissivity Iout=Iin as a
function of the frequency ω=ð2πÞ.

FIG. 13. Schematic illustration of the signal recycling cavity
incorporating the triangular optical cavities for implementing the
pump-signal combiner and the pump-signal splitter, indicated as
G1 and G2, respectively, in Fig. 5.
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FSR is 300 MHz. The transmissivity of the cavity in this
case is plotted in Fig. 12(b). Such a cavity can therefore be
used to separate or combine beams with a frequency
different as low as 1 MHz.
For the triangular cavity to function as a beam combiner,

the control laser (indicated as F1) is resonant in the cavity,
while the probe (indicated as F2) is nonresonant in the
cavity. On the other hand, for the triangular cavity to
function as a beam splitter, both beams are sent in opposite
directions. The part of the signal recycling cavity incor-
porating the triangular optical cavities for implementing
the pump-signal combiner and the pump-signal splitter,

indicated as G1 and G2, respectively, in Fig. 5, are shown in
Fig. 13. A small amount of control field may be reflected by
the triangular cavity and contribute to the output of the
interferometer. However, it should be noted that the
detection process employs mixing with the main pump
laser. Since the control field frequency differs from the
main pump laser by 1 GHz, the beat note between the
leaked control field and the main pump laser can be easily
filtered out electronically, without any effect on the GW
signal. Also, in aLIGO, the signal is sent through an output
mode cleaner before detection [16]. The output mode
cleaner would filter out such leaked control light as well.
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