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In a conventional atomic interferometer employing N atoms, the phase sensitivity is at the standard quantum limit:
1/

√
N . Under usual spin squeezing, the sensitivity is increased by lowering the quantum noise. It is also possible

to increase the sensitivity by leaving the quantum noise unchanged while producing phase amplification. Here we
show how to increase the sensitivity, to the Heisenberg limit of 1/N , while increasing the quantum noise by

√
N

and amplifying the phase by a factor of N . Because of the enhancement of the quantum noise and the large phase
magnification, the effect of excess noise is highly suppressed. The protocol uses a Schrödinger cat state representing
a maximally entangled superposition of two collective states of N atoms. The phase magnification occurs when we
use either atomic state detection or collective state detection; however, the robustness against excess noise occurs
only when atomic state detection is employed. We show that for one version of the protocol, the signal amplitude is
N when N is even, and is vanishingly small when N is odd, for both types of detection. We also show how the pro-
tocol can be modified to reverse the nature of the signal for odd versus even values of N . Thus, for a situation where
the probability of N being even or odd is equal, the net sensitivity is within a factor of

√
2 of the Heisenberg limit.

Finally, we discuss potential experimental constraints for implementing this scheme via one-axis-twist squeezing
employing the cavity feedback scheme, and show that the effects of cavity decay and spontaneous emission are
highly suppressed because of the increased quantum noise and the large phase magnification inherent to the proto-
col. As a result, we find that the maximum improvement in sensitivity can be close to the ideal limit for as many as 10
million atoms. © 2020 Optical Society of America

https://doi.org/10.1364/JOSAB.396358

1. INTRODUCTION

In an atomic interferometer, the signal S can be expressed as
a function of the phase difference φ between the two arms.
The measurement sensitivity 3 can be expressed as the inverse
of the phase fluctuation: 3= |∂φS/1S|, where ∂φ ≡ ∂/∂φ.
Here, ∂φS is the phase gradient of the signal and1S is the noise,
expressed as the standard deviation of the signal. When excess
noise is suppressed sufficiently, 3 represents the inverse of the
quantum phase fluctuation, limited by the quantum projection
noise [1]. For a conventional atomic interferometer, the sensi-
tivity is at the standard quantum limit (SQL): 3=

√
N, with

N being the number of atoms interrogated within the measure-
ment time. Using spin squeezing, it is possible to surpass the
SQL, and a key goal in this context is to achieve the Heisenberg
limit (HL), under which3= N, representing an improvement
by a factor of

√
N.

To enhance 3, one can either increase the phase gradient
or decrease the noise. In a conventional approach for spin
squeezing, one minimizes the noise. For example, using optimal
one-axis-twist squeezing and two-axis-counter-twist squeezing
[2], the noise can be reduced respectively by a factor of N1/3 and
√

N/2, while the phase gradient remains essentially unchanged.
As such,3= N 5/6 for the former and3= N/

√
2 for the latter.

Though the two-axis-counter-twist squeezing can yield a better
sensitivity, it is experimentally more complicated than the one-
axis-twist squeezing [3–10]. Recently, it was shown that it is also
possible to reach sensitivity at or near the HL using variants of
one-axis-twist squeezing [11–13]. Reference [11] proposed and
Ref. [12] demonstrated the echo squeezing protocol, which can
increase the phase gradient by a factor of∼

√
N/e while leaving

the noise unchanged, thus producing3≈ N/
√

e . In Ref. [13]
we proposed a Schrödinger cat atomic interferometer (SCAIN)
that makes use of critically tuned one-axis-twist squeezing,
rotation, inverse rotation and unsqueezing, and collective state
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detection [14–18]; it reduces the noise by a factor of
√

N while
leaving the phase gradient unchanged, yielding3= N.

In this paper, we describe a protocol that is a variant of the
SCAIN protocol, with radically different behavior. It employs
the conventional detection technique by measuring directly the
populations of the spin-up or spin-down states of individual
atoms. We show that under this protocol, the phase gradient
is increased by a factor of N, while the noise is also increased
by a factor of

√
N. The net enhancement of 3 is by a factor

of
√

N, reaching the HL. However, because of the increase in
noise, this is now significantly more robust to excess noise than
all the protocols described above. Specifically, for this protocol,
it should be possible to achieve 3= N/

√
2 even when the

excess noise is greater than the quantum projection noise for
a conventional atom interferometer by a factor of

√
N. We

also show that the signal amplitude is N when N is even, and is
vanishingly small when N is odd, for both types of detection. In
addition, we show how the protocol can be modified to reverse
the nature of the signal for odd versus even values of N. Thus, for
a situation where the probability of N being even or odd is equal,
the net sensitivity is within a factor of

√
2 of the HL. Finally, we

discuss potential experimental constraints for implementing
this scheme via one-axis-twist squeezing employing the cavity
feedback scheme, and show that the effects of cavity decay and
spontaneous emission are highly suppressed due to the increased
quantum noise and the large phase magnification inherent to
the protocol.

The rest of the paper is organized as follows. In Section 2 we
describe the protocol for the increased-noise SCAIN employing
conventional detection. In Section 3, we present the analytical
derivations of signals, noise, and enhancement of sensitivity
under conventional detection and collective state detection. In
Section 4, we discuss the suppression of the effect of excess noise.
In Section 5 we discuss experimental considerations, and esti-
mate the effect of cavity decay and spontaneous emission, with
some of the details of the analysis presented in Appendix A. In
Section 6, we discuss comparisons with other protocols [19–21]
that are closely related to ours. We present the conclusion in
Section 7.

2. SCHRÖDINGER CAT ATOMIC
INTERFEROMETER WITH INCREASED NOISE

The protocol considered here is a modified version of the
SCAIN, which is based on the conventional Raman atomic
interferometer [22–25]. Briefly, both make use of N three-level
atoms with metastable states |1, pz = 0〉 and |2, pz = ~k〉
and an excited state |3〉 in the 3 configuration, coupled by a
pair of counterpropagating laser beams. Here, k ≡ k1 + k2,
with k1 (k2) being the wavenumber for the beam propagating
in the +ẑ (−ẑ) direction, and pz is the z component of the
linear momentum of the atom. Each atom can be reduced
to an equivalent two-level model via adiabatic elimination
of the excited state [26,27], and thus can be represented by a
pseudospin-1/2 operator ĵ , where we define |↓〉 ≡ |1, pz = 0〉
and |↑〉 ≡ |2, pz = ~k〉. The ensemble, represented by a col-
lective spin operator Ĵ ≡

∑N
i ĵ i , is initially prepared in a

coherent spin state [15], |−ẑ〉 =
∏N

i=1 |↓〉, where all atoms

Fig. 1. (a) Schematic illustration of the protocol employed for
the Schrödinger cat atomic interferometer, (b) the Husimi quasi-
probability distributions at different stages of the protocol, for N = 40,
µ= π/2, auxiliary rotation axis= x̂ , ξ =−1, andφ = 0.5π/N.

are in the spin-down state. Here we employ the notation that
a state |ê〉 is a coherent spin state in the direction of the unit
vector ê, with the pseudospin vector of each atom being in that
direction. For the conventional Raman atomic interferometer,
the ensemble is then subjected to the usual pulse sequence
of π/2−dark−π−dark−π/2, labeled 1, 4, 7 in Fig. 1(a).
For the SCAIN, however, the ensemble undergoes four addi-
tional pulses, labeled 2, 3, 5, 6 in Fig. 1(a), corresponding to
the squeezing, rotation, inverse rotation, and unsqueezing
operations [13].

The evolution of the quantum states on a Bloch sphere is
shown in Fig. 1(b), using the Husimi quasi-probability dis-
tribution [2,15]. The exact effects of the protocol depend on
the values of a set of parameters: the parity of N, the squeezing
parameterµ for one-axis-twist squeezing, the auxiliary rotation
axis (which can be x̂ or ŷ) around which the rotation will be
implemented, the corrective rotation sign ξ , which can take
values of±1 corresponding to redoing or undoing the first aux-
iliary rotation, and the dark zone phase shift φ. The case shown
here is for an even value of N = 40, with µ= π/2, auxiliary
rotation axis= x̂ , ξ =−1, and φ = π/80. In our notation,
the quasi-probability distribution for a state |9〉 is expressed as
QH(θ, φ)≡ |〈9|8(θ, φ)〉|

2, where

|8(θ, φ)〉 ≡

(
cos

θ

2

)N N∑
k=0

√(
N
k

)(
e iφ tan

θ

2

)k

|E N−k〉

(1)
represents the coherent spin state corresponding to all the spins
pointing in the direction {θ, φ}, and |En〉 represents the Dicke
collective states [14–16], defined as

|En〉 =

(N
n

)
∑
k=1

Pk |↓
N−n
⊗↑

n
〉/

√(
N
n

)
, (2)

with Pk being the permutation operator [16,28]. Here, the
extremal state |E N〉 corresponds to all pseudospins in the ẑ
direction. As such, we will refer to these as the Z-directed Dicke
manifold. As needed, we will also refer to X (Y )-directed Dicke
manifolds, for which |E N〉 corresponds to all pseudospins in the
x̂ ( ŷ) direction.
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In illustrating the nature of the quasi-probability distribution
at various stages, we have used different orientations of the Bloch
sphere as appropriate, and added± symbols in front of two axes
to indicate that the picture looks the same when it is rotated by
180◦ around the third axis. At the start (point A), the system is
in state |−ẑ〉. After the firstπ/2 pulse (point B), the state rotates
around the x̂ axis to reach state | ŷ〉. We then apply a squeezing
Hamiltonian of the form H = χ Ĵ 2

z for a duration of τ such that
µ= χτ . After the squeezing pulse (point C), the state is split
equally between two coherent spin states, and can be expressed
as (| ŷ〉 − η|− ŷ〉)/

√
2 [29–33], where η= i(−1)N/2, repre-

senting a phase factor with unity amplitude. It should be noted
that this phase factor depends on the super-even parity, repre-
senting whether N/2 is even or odd; however, the shapes of the
fringes, as well as the values of the quantum phase fluctuation,
are not expected to depend on the value of the super-even parity,
as we have verified explicitly.

This is a cat state [34], but as a superposition of the two
extremal states of the Y-directed Dicke manifold, which
cannot be used to achieve phase magnification, since the
phase difference between the two arms corresponds to
rotation around the ẑ axis. This problem is solved by apply-
ing the auxiliary rotation of π/2 around the x̂ axis, which
transforms this state to (|−ẑ〉 + η|ẑ〉)/

√
2. This (point

D) represents the desired cat state, as a superposition of
the two extremal states of the Z-directed Dicke manifold:
(|E0〉 + η|E N〉)/

√
2. After the first dark zone (point E), the

state is e−iφ Ĵz/2(|E0〉L + η|E N〉U )/
√

2, where the subscript
L (U ) is for the lower (upper) arm of the interferometer. Since
both |E0〉 and |E N〉 are eigenstates of Ĵ z, with eigenvalues
of −N/2 and N/2, respectively (~= 1), this state can be
simplified to (e iφN/4

|E0〉L + e−iφN/4η|E N〉U )/
√

2. The
resulting quasi-probability distribution remains unchanged,
but the quantum state incorporates these phase accumula-
tions. After the π pulse (point F), |E0〉L becomes −i |E N〉L ,
while |E N〉U becomes −i |E0〉U . After the second dark zone
(point G), the state is (e iφN/2η|E N〉L + e−iφN/2

|E0〉U )/
√

2,
so that the net phase difference between the two paths is Nφ,
thus magnifying the rotation-induced phase by a factor of
N. To reveal the phase magnification, we apply another
auxiliary rotation by an angle of −π/2 around the x̂ axis
(point H), followed by the unsqueezing Hamiltonian, −H
(point I). After the second π/2 pulse (point J), the state is
|9〉 f = cos(Nφ/2)|E0〉 − η sin(Nφ/2)|E N〉. The whole
protocol can be expressed as

|9〉 f = e−i π2 Ĵx e iµ Ĵ 2
z e−iξ π2 Ĵx e i φ2 Ĵz e−iπ Ĵx

× e−i φ2 Ĵz e−i π2 Ĵx e−iµ Ĵ 2
z e−i π2 Ĵx |−ẑ〉. (3)

If the population of the collective state |E0〉 were detected
[13], the signal would be cos2(Nφ/2), with fringes a factor
of N narrower than that for the conventional Raman atomic
interferometer. The phase gradient remains unchanged, since
the phase enhancement is countered by a reduction in the signal
amplitude by a factor of N. However, the noise is now reduced
by a factor of

√
N, since the number of particles is unity. As such,

the sensitivity increases by
√

N, reaching the HL. In what fol-
lows, we show how the behavior of the interferometer is altered
very significantly when we employ the conventional detection
technique corresponding to measuring the z component of the
combined spin of all atoms, the Ĵ z operator, which represents
the difference between the number of atoms in the spin-up and
spin-down states.

The signal for the conventional detection SCAIN is obtained
by expanding Ĵ z in the basis of the Z-directed Dicke manifold,
and then taking the expectation value with respect to |9〉 f . This
is found to be 〈9 f | Ĵ z|9 f 〉 =−N/2 cos(Nφ), as derived in
Section 3, again showing N-fold fringe narrowing. However,
compared to the case of the collective state detection SCAIN,
the amplitude of the fringes is now a factor of N larger. As such,
the phase gradient is now larger than that for a conventional
Raman atomic interferometer by a factor of N. At the same
time, the noise is also increased by a factor of

√
N, as derived in

Section 3. The net enhancement in sensitivity is by a factor of
√

N, reaching the HL, just as in the case of the collective state
detection SCAIN. However, because of the increase in quantum
noise, the conventional detection SCAIN is significantly more
robust against excess noise, as discussed in Section 4.

For the particular choice of the auxiliary rotation axis used
in the protocol in Fig. 1(b), the expression for the signal for the
conventional detection SCAIN shown above applies only to the
case when N is even. The results for the odd value of N = 41,
with all other parameters the same as in Fig. 1(b), are found to be
drastically different (see Section 3), due to the fact that the state
after the squeezing pulse will now be split equally between |x̂〉
and |−x̂〉, thus generating a cat state as a superposition of the
two extremal states of the X -directed Dicke manifold [29–31].
This modification of the state, caused by a change of just 1 in
the value of N, can be understood by noting that the propagator
corresponding to the one-axis-twist squeezing Hamiltonian for
µ= π/2 can be decomposed as a sum of two parts, one of which
is proportional to a product of N Pauli spinors [30,31]. The
ensuing auxiliary rotation around the x axis will not transform
it into the desired cat state required to yield the N-fold phase
amplification. This also complicates the evolution of the quan-
tum states during the following stages, for which an analytical
expression for the final state is not easy to find. Instead, we take
a numerical approach to simulating the state evolutions [35].
The signals for the conventional detection SCAIN as a function
of φ, for both even and odd values of N, are shown in Fig. 2;
for reference, the signal corresponding to one full fringe of the
conventional Raman atomic interferometer is also shown in
Fig. 2(a). The plots in Figs. 2(b) and 2(c) clearly show the N-fold
narrowed fringes for the even case, while only a central fringe is
observable for the odd case. We also find that changing the sign
of ξ simply inverts the fringes, which implies that the N-fold
reduction of the fringe width happens for the even case no mat-
ter whether we choose to redo (ξ = 1) or undo (ξ =−1) the first
auxiliary rotation. Of course, the nature of the signals for odd
and even values of N can be reversed by switching the choice of
the auxiliary rotation axis from x̂ to ŷ.

In Fig. 3, we illustrate the behavior of the inverse of the
quantum fluctuation in rotation (QFR−1) as a function of the
squeezing parameter µ for different choices of parameters for
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Fig. 2. Signals corresponding to the detection of 〈 Ĵ z/~〉 as a func-
tion of φ, for µ= π/2, auxiliary rotation axis = x̂ , and ξ =−1.
N = 40 is shown in red, while N = 41 is shown by the dashed blue
curves. (a) Fringes for conventional Raman atomic interferometer
for comparison, (b) fringes for the conventional detection SCAIN,
(c) zoomed-in view of the fringes shown in (b). The horizontal span in
(c) is 10 times smaller than those in (a) and (b).

the conventional detection SCAIN, along with a comparison
with the collective state detection SCAIN. The quantum fluc-
tuation in rotation is simply a scaled version of the quantum
phase fluctuation when the phase difference is induced by
rotation. For each case, QFR−1 is normalized to QFR−1

HL for
N = 40, as indicated by the solid black line. The dashed black
line shows the QFR−1

SQL values for N = 40. Figure 3(a) shows
QFR−1 values for the conventional detection SCAIN only. For
µ= π/2, the sensitivity for an even number of atoms (red) is
at the HL, and that for an odd number of atoms (dashed blue)
is at the SQL. For an even N, this sensitivity is reached due to
an amplification of the phase by a factor of N, and a concomi-
tant increase in the noise by a factor of

√
N. For an odd N,

there is a phase amplification, manifested as a Fabry–Perot-like
fringe around φ = 0 that is narrowed by a factor of

√
N, along

with an increase in the noise by a factor of
√

N. The difference
between the two cases disappears when the value ofµ is reduced
below a threshold value of ∼0.45π . There is a range of values
of the squeezing parameter (0.2π ≤µ≤ 0.45π ) over which
the normalized value of QFR−1 is ∼1/

√
2. Finally, we note

that the vanishing value of QFR−1 for µ= 0 is simply due the
fact that the signal is constant as a function of φ. In Figs. 3(b)
and 3(c), we compare the sensitivity of the conventional detec-
tion SCAIN with that of the collective state detection SCAIN
for even and odd N values, respectively. For an even N value,
the sensitivity for both detection protocols are the same for
µ= π/2. However, for the collective state detection SCAIN,
the sensitivity drops off to zero rapidly for decreasing values of
µ. For an odd value of N, the sensitivity for the collective state
detection SCAIN is zero for all values of µ, due to the signal
being a constant as a function ofφ.

Until now, we have analyzed and compared the per-
formance of a conventional detection SCAIN separately

Fig. 3. Illustration of QFR−1 for different cases as a function of
the squeezing parameter µ, normalized to the HL (solid black line),
for auxiliary rotation axis = x̂ and ξ =+1. (a) The case of the con-
ventional detection SCAIN, with red for N = 40 and the dashed blue
curve for N = 41, (b) comparison between the conventional detection
SCAIN and the collective state detection SCAIN for an even N = 40,
(c) similar comparison for an odd N = 41. The dotted black line shows
the SQL.

for even and odd values of N. In scenarios where the odd
and even parity cases can occur with equal probability (for
example, when atoms caught in a magneto-optic trap and
then released are used as the source for the conventional
detection SCAIN), the average value of QFR−1 is given by
QFR−1

AVE = [(QFR−1
EVEN)

2/2+ (QFR−1
ODD)

2/2]1/2 [35]. Thus,
for a large number of atoms (N� 1), the average sensitivity is a
factor of

√
2 below the HL.

As described in Ref. [18], the combination of one-axis-twist
squeezing, rotation, unrotation, unsqueezing, and collective
state detection can also be used to realize a Schrödinger cat
(SC) atomic clock with HL sensitivity. Such a clock with HL
sensitivity can also be realized when conventional detection of
atomic states is employed, but with increased quantum noise,
thus making it highly insensitive to excess noise [35].

3. ANALYTICAL DERIVATIONS OF SIGNALS,
NOISE, AND ENHANCEMENT OF SENSITIVITY
UNDER CONVENTIONAL DETECTION AND
COLLECTIVE STATE DETECTION

As shown earlier, with the chosen parameters, the final
state of the ensemble for the SCAIN protocol is given by
|9〉 f = cos(Nφ/2)|E0〉 − η sin(Nφ/2)|E N〉. For col-
lective state detection, the operator to be measured can be
defined in general as Q̂m ≡ |Em〉〈Em |, where |Em〉 is the
Dicke collective state defined in Eq. (2). Thus, the operator
we measure is Q̂0 if we detect the |E0〉 state, and Q̂N if we
detect the |E N〉 state. For the final state described above, if we
measure the former, the signal is cos2(Nφ/2); if we measure
the latter, the signal is sin2(Nφ/2). For conventional detec-
tion, the operator we measure is R̂ = Ĵ z/~. It can be shown
[35] that R̂ = Ĵ z/~=

∑J
m=−J mQ̂ J+m . In the final state

described above, we have only two of the collective states. As
such, for this state, 〈R̂〉 =−J 〈Q̂0〉 + J 〈Q̂N〉. Thus it fol-
lows that for conventional detection, the signal is given by
−J cos2(Nφ/2)+ J sin2(Nφ/2)=−(N/2) cos(Nφ), which
has the same fringe width as that obtained by using collective
state detection, except that the signal now ranges from N/2 to
−N/2.

To determine QFR−1 for both protocols, we first define
the signal for collective state detection as 6 ≡ 〈Q̂0〉 =
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cos2(Nφ/2) and the standard derivation of the signal as
16 ≡ [〈Q̂2

0〉 −6
2
]
1/2. Similarly, we define the signal for

conventional detection as S ≡ 〈R̂〉 =−(N/2) cos(Nφ) and
the standard deviation of the signal as 1S ≡ [〈R̂2

〉 − S2
]
1/2.

Noting thatφ = 2 mA�G/~≡�G/0, with A being the area of
the whole interferometer and�G being the normal component
of the rate of rotation, we can now write

QFR−1
Q =

∣∣∣∣0−1 ∂6/∂φ

16

∣∣∣∣ ; QFR−1
R =

∣∣∣∣0−1 ∂S/∂φ
1S

∣∣∣∣ , (4)

where we have used the subscript Q for collective state detection
and R for conventional detection. We note that Q̂2

0 = Q̂0,
which means that 16 ≡ [6 −62

]
1/2. Using the expression

for 6 from above, we easily find that QFR−1
Q = N/0. The

value of QFR−1 for a conventional Raman atomic interferom-
eter is given by

√
N/0, which is the SQL. As such, collective

state detection represents an improvement by a factor of
√

N,
reaching the HL sensitivity.

For conventional detection, it easy to show [35] that
R̂2
=
∑J

m=−J m2 Q̂ J+m . Thus, for the final state described

above, we get 〈R̂2
〉 = J 2

〈Q̂0〉 + J 2
〈Q̂N〉 = J 2

= N2/4.
It follows immediately that 1S ≡ [〈R̂2

〉 − S2
]
1/2
=

{N2/4− N2/4[cos2(Nφ)]}1/2 = (N/2)| sin(Nφ)|. It should
be noted that the peak value of the standard deviation of the
signal in this case is N/2, which happens at the points where the
slope of the fringe is the maximum. From Eq. (4), we then get
QFR−1

R = N/0, yielding the HL sensitivity.

4. INSENSITIVITY TO EXCESS NOISE

The degree of suppression of excess noise for different
protocols is illustrated in Fig. 4. Here, we consider a
situation where excess noise contributes an additional vari-
ance 1S2

EN to the signal. The sensitivity is then given by

3= |∂φS/
√
1S2

QPN +1S2
EN| =3QPN/

√
1+ ρ2, where

ρ ≡1SEN/1SQPN. Here we have use the subscript “EN” for
excess noise and “QPN” for quantum projection noise.

Fig. 4. Sensitivity3 as a function of excess noise1SEN for various
protocols. CD, conventional detection; CSD, collective state detec-
tion; ESP, echo squeezing protocol; TACT, two-axis-counter-twist
squeezing; AI, atomic interferometer. For each version of the SCAIN, I
indicates the case when the parity of N is known, while II indicates the
case where the signal is averaged over both parities.

One way to characterize the degree of robustness against
excess noise is by determining the value of 1SEN for which
ρ = 1. As can be seen, for two-axis-counter-twist squeezing, this
value is 1, making it particularly vulnerable to excess noise. In
contrast, for the echo squeezing protocol (as well as for the con-
ventional atomic interferometer), this value is

√
N, making it a

factor of
√

N more robust than two-axis-counter-twist squeez-
ing. For the conventional detection SCAIN, this value is N,
making it a factor of

√
N more robust that the echo squeezing

protocol and a factor of N more robust than two-axis-counter-
twist squeezing. We also see that the collective state detection
SCAIN is as sensitive to excess noise as two-axis-counter-twist
squeezing. Thus, in switching from collective state detection
to conventional detection, the robustness of the SCAIN pro-
tocol to excess noise is improved by a factor of N. In Section 6,
we discuss other protocols that have been proposed recently
with insensitivities to excess noise comparable to that of the
conventional detection SCAIN.

5. LIMITATIONS ON MAXIMUM ACHIEVABLE
SENSITIVITY DUE TO EXPERIMENTAL
NON-IDEALITIES

While ideally the conventional detection SCAIN would
enhance the sensitivity by a factor of

√
N and be robust against

excess noise, various experimental non-idealities would poten-
tially limit the maximal achievable sensitivity. We consider first
the effect of non-idealities inherent in the one-axis-twist squeez-
ing process needed for generating the SC state. There are several
experimental schemes for realizing one-axis-twist squeezing
[3,4,7,11,12,36–40]. For concreteness, here we consider the
approach based on cavity feedback dynamics [3,4,7,11,12,37]
and investigate the effects of cavity decay and spontaneous
emission. In this approach, a probe is passed through a cavity
at a frequency that is tuned halfway between the two legs of
a 3 transition in which the spin-up and spin-down states are
coupled to an intermediate state. The cavity is tuned to be below
resonance for the probe. The energy levels of the spin-up and
spin-down states are light shifted due to the probe, in opposite
directions. The resulting dispersion shifts the cavity resonance
frequency by an amount that is proportional to J z. The intra-
cavity probe intensity changes linearly with this cavity shift,
since it is on the side of the resonance, thus affecting the light
shifts. The net result is an energy shift for all the atoms that is
proportional to J 2

z , so that the interaction Hamiltonian can be
expressed as H = ~χ J 2

z , whereχ is a parameter that determines
the strength of the squeezing process. Changing the sign of the
probe detuning with respect to the cavity resonance reverses the
sign of the Hamiltonian, thus producing unsqueezing. For a
squeezing interaction time of τ , the characteristic strength for
the process is given byµ≡ χτ . This is illustrated schematically
in Fig. 5. Here the detuning for the cavity mode with respect to
either ground state is1, and the probe detuning with respect to
the cavity resonance is δ.

In order to express the results quantitatively, we note first
that while the actual improvement in the performance of the
interferometer or the clock is given by (3/3SQL), it is cus-
tomary in the literature to quote the value of (3/3SQL)

2. To
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Fig. 5. Illustration of the scheme considered for one-axis-twist
squeezing using a three-level system, where the two low-lying states are
metastable and represent the spin-up and spin-down states.

remain consistent with this custom, we define F , the factor of
improvement, as follows:

F ≡
(

3

3SQL

)2

=
(1φSQL)

2

(1φ)2
=
(1/N)

(1φ)2
. (5)

To incorporate the effects of cavity decay and spontaneous
emission, we can write

(1φ)2 = (1φCOH)
2
+ (1φCAV)

2
+ (1φSE)

2, (6)

where1φCOH represents the phase variance due to the coherent
evolution of the spins,1φCAV represents the phase variance due
to cavity decay, and 1φSE represents the phase variance due to
spontaneous emission. Thus, we get

F = [N{(1φCOH)
2
+ (1φCAV)

2
+ (1φSE)

2
}]
−1. (7)

We also define 1φIDL as the phase variance under ideal
conditions (i.e., when there is no cavity decay or spontaneous
emission). We recall that under these conditions, the sig-
nal for the conventional detection SCAIN is SIDL = 〈 Ĵ z〉 =

(−N/2)Cos(Nφ), with 1SIDL = (N/2)|Sin(Nφ)| and
(∂φS)IDL = (N2/2)Sin(Nφ). Thus, in this case,

1φCOH =1φIDL =
1SIDL

|∂φS|IDL
=

1

N
, (8)

independent of the value of φ, so that FIDL = N. Of course, in
general,1φCOH 6=1φIDL.

For the general case where some of the spins are dephased
due to either cavity decay or spontaneous emission, the number
of atoms, defined as Ñ, that will constitute the cat state, repre-
senting the coherent evolution of the spins, will be less than N.
Thus, we can write the coherent part of the signal, its standard
deviation, and its phase gradient as

S̃ = (−Ñ/2)Cos(Ñφ);1S̃ = (Ñ/2)|Sin(Ñφ)|;

|∂φ S̃| = (Ñ2/2)|Sin(Ñφ)|. (9)

The angular variances are determined by the ratios of the sig-
nal variances and the phase gradients of the coherent part of the
signal, as follows:

(1φCOH)
2
= (1S̃)2/(∂φ S̃)2,

(1φCAV)
2
= (1SCAV)

2/(∂φ S̃)2,

(1φSE)
2
= (1SSE)

2/(∂φ S̃)2. (10)

As illustrated in Fig. 2 of Ref. [1], during the operation of an
interferometer, one measures the signal at two different phases,
(φ − δφ) and (φ + δφ), and φ is varied until these two signals
are equal. The value of φ determined this way corresponds to
the value for which the signal is the maximum. Deviation of
this value of φ from the quiescent value (typically zero) is then
used to determine the amount of rotation in the case of an atom
interferometric gyroscope. For the conventional detection
SCAIN, a convenient value of δφ is π/(2Ñ). This corresponds
to making measurements at the point of the signal fringe where
both the magnitude of the phase gradient of the coherent signal
(|∂φ S̃|) and the standard deviation of the coherent signal (1S̃)
have their maximum values, as can be seen in Eq. (9). Therefore,
all quantities in Eq. (10) are to be evaluated at φo = π/(2Ñ).
We thus get

F =
[

4N

Ñ4

{
Ñ2

4
+ (1SCAV)

2
+ (1SSE)

2

}]−1

. (11)

It should be noted that the effect of the variances due to cav-
ity decay as well as due to spontaneous emission are strongly
suppressed because of the magnified phase gradient of the sig-
nal. This is yet another manifestation of the robustness of the
conventional detection SCAIN.

We use δN ≡ N − Ñ to represent the reduction in the
peak-to-peak amplitude of the signal due to non-idealities. As
we show next, the cavity decay process and the spontaneous
emission process both contribute to δN, along with producing
additional variances in the signal. The net reduction in the value
of F is due to a combination of these factors. In what follows,
we estimate the values of1SCAV,1SSE, and δN resulting from
these processes, in order to determine the value of F . Note that
the following analysis makes frequent use of parameters defined
and equations derived in Appendix A.

Consider first the effect of cavity decay. A rigorous study
of the effect of cavity decay on the SCAIN protocol would
require carrying out the whole analysis using the density matrix
approach, based on the Hamiltonian and the Lindblad operator
shown in Eq. (A10) in Appendix A. For N atoms, the size of
the density matrix will be N2. To solve the equation of motion,
one has to form a vector consisting of all the elements of the
density matrix, and the propagator matrix that determines the
time derivative of this vector would have dimensions of N2 X N2

[41]. This is a daunting task for a large value of N. For example,
to determine the time evolution for N= 103, one has to diago-
nalize a matrix with 1012 elements. Diagonalization is necessary
even if one wants to make use of direct numerical integration,
since the smallest time steps to be used for the integration must
be significantly smaller than the inverse of the largest eigenvalue
of the propagator matrix, and the duration of the evolution must
be significantly larger than the inverse of the smallest eigenvalue.
In the near future, we will carry out such an analysis for as large
a value of N as feasible within the constraints of computation
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resources. For the present work, we make use of a perturbative
approach consisting of two steps. In the first step, we ignore the
effect of the cavity decay and use the Hamiltonian of Eq. (A10)
to evolve the quantum state of the ensemble coherently. The
results of this step have already been documented above. In the
second step, we estimate the effect of the cavity decay by consid-
ering the density matrix equation of motion attributable to only
the Lindblad operator in Eq. (A10). Such a two-step approach
has also been used in Ref. [11], for example. Below we carry out
the second step of this analysis.

We define γ ≡ 2χ/δ̃ (where δ̃ is the probe detuning normal-
ized to the cavity decay rate) so that the Lindblad operator in
Eq. (A10) can be expressed as L =

√
γ J z. From Eq. (A5), it then

follows that the incoherent part of the evolution of the density
matrix can be written as

ρ̇ = γ J zρ J †
z −

γ

2
{J †

z J z, ρ}. (12)

Using the fact that 〈 ˆ̇O〉 = tr (ρ̇ Ô) for any operator Ô, it can
be shown that

〈 J̇±〉 =−(γ /2)〈J±〉,

〈 J̇ 2
x 〉 =−γ 〈J

2
x 〉 + γ 〈J

2
y 〉; 〈 J̇

2
y 〉 =−γ 〈J

2
y 〉 + γ 〈J

2
x 〉,

〈 J̇ z〉 = 0; 〈 J̇ 2
z 〉 = 0, (13)

where J± ≡ J x + i J y , so that 〈 J̇ x 〉 =−(γ /2)〈J x 〉 and
〈 J̇ y 〉 =−(γ /2)〈J y 〉. In the protocol for the SCAIN, we
have the following values at the beginning of the squeezing
process: 〈J x 〉 = 〈J z〉 = 0, 〈J y 〉 = J , 〈J 2

x 〉 = 〈J
2
z 〉 = J /2, and

〈J 2
y 〉 = J 2. For γ t� 1, we then find that at the end of the

squeezing process, we have (keeping in mind that this evolu-
tion is due to the cavity decay effect only) 〈J x 〉 = 〈J z〉 = 0,
〈J y 〉 ≈ J (1− γ t/2), 〈J 2

z 〉 = J /2, 〈J 2
x 〉 = (J /2)(1+ 2J γ t),

and 〈J 2
y 〉 = J 2(1− γ t), leaving the value of 〈J2

〉 = J (J + 1)
unchanged. Thus, we get

(1J x )
2
= 〈J 2

x 〉 − 〈J x 〉
2
= J /2+ J 2γ t,

(1J y )
2
= 〈J 2

y 〉 − 〈J y 〉
2
= 0,

(1J z)
2
= 〈J 2

z 〉 − 〈J z〉
2
= 0. (14)

Therefore, the net effect of the cavity decay is an increase in
the value of (1J x )

2 by an amount J 2γ t , and a decrease in the
length of 〈J y 〉 by J γ t/2. We recall that in the protocol for the
SCAIN, the auxiliary rotation immediately after the squeezing
process maps the y component of the spins to the z component.
Thus, the reduction in the length of 〈J y 〉 maps to a reduction
in the length of 〈J z〉, and therefore a reduction in the coherent
signal. On the other hand, an increase in the variance of J x

does not contribute directly to an increase in the variance of
the signal (which corresponds to measuring J z). However, we
allow, as an upper limit, this increase in the variance of J x as
a corresponding increase in the variance of the signal. Next,
note that ideally, the initial conditions for the inverse squeezing
process at φ =±π/(2N) (which is the value of the phase at
which measurements are to be made, as discussed earlier) are the
same as those at the beginning of the squeezing process, as can

be seen in Fig. 1. Thus, we can assume that the effects of cavity
decay for the inverse squeezing process are essentially the same
as what we estimated above for the squeezing process. As such,
for the squeezing and the inverse squeezing processes combined,
we get

(1SCAV)
2
= 2 ∗ J 2γ t = N2γ t/2,

δNCAV = 2 ∗ J γ t/2= Nγ t/2. (15)

Next, we consider the effect of spontaneous emission. As
noted in the paragraph after Eq. (A5), for a large value of N, it
is virtually impossible to account for the effect of spontaneous
emission analytically. As such, we account for this in a heuris-
tic manner, similar to what is done in Ref. [42]. The number
of photons in the cavity is ζ 2, where ζ is given by Eq. (A8).
Assuming that the atomic excited state (|m〉 in Fig. 5) decays at
a rate of 0, and that1� 0 as well as1� g (with g being the
vacuum Rabi frequency for the cavity mode and 1 being the
cavity detuning away from each atomic resonance), the number
of photons scattered by each atom happens at the rate of

0̃ = (g /1)2|ζ |20 =
χ

2C
(1+ δ̃2)

|δ̃|
, (16)

where C is the single-atom cooperativity parameter.
Spontaneous emission causes the spin to flip randomly, from
up to down and vice versa. Thus, the value of J z decreases via
random walk as

(1J SE
z )2 ≈P(1/2)N0̃t . (17)

Here, P is the probability of spin flip, which is 1/2 for a sym-
metric system, such as the one depicted in Fig. 5, so that we get,
in the limit of |δ̃| � 1,

(1J SE
z )2 ≈

Nχ t
8C
|δ̃|. (18)

Thus, we can now write that

(1SSE)
2
=

Nχ t
8C
|δ̃|; δNSE =

√
Nχ t
8C
|δ̃|. (19)

We define2≡ δN/N, where δN = δNCAV + δNSE, so that
Ñ = N(1−2). We also specify thatχ t = π/2 is the condition
for creating the cat state, and assume that 2� 1. Inserting
Eqs. (15) and (19) into Eq. (11), we then get

F ≈
[

1

N
(1+ 22)+

2π

N2
(1+ 42)

{
N

|δ̃|
+
|δ̃|

8C

}]−1

. (20)

The term inside the curly brackets in Eq. (20) is minimized
for |δ̃| =

√
8CN , where CN ≡ NC is the collective cooperativity

parameter. ForCN� 1 and this value of |δ̃|, we get

2≈ [π2/(32CN)]
1/4,

F ≈
[

1

N
(1+ 22+ 822

+ 3223)

]−1

. (21)

Since2� 1 forCN� 1, we thus getF ≈ N(1− 22).
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Fig. 6. Illustration of the factor of improvement F as a function of
the cooperativity parameter C for four different values of N. In each
case, the ideal value ofF is indicated by the dotted red line.

In Fig. 6, we have illustrated the factor of improvement F as
a function of the cooperativity parameter C for four different
values of N. In each case, the ideal value of F is indicated by
the dotted red line. As can be seen, even for C = 0.01, which
should be easily accessible, based on the analysis shown after
Eq. (A12), the achievable value of F is within less than 1 dB of
the maximum possible value of 70 dB for 10 million atoms.

In the preceding discussion, we have addressed the effect of
residual spontaneous emission heuristically. This model may
not account fully for the deleterious effects of spontaneous
emission. Consider, for example, a situation where the centers
of mass of the two components of the SC state are separated
spatially by a distance D in the z direction. If a spontaneous
emission event occurs, we will call the event “distinguishable” if,
in principle, it is possible to determine which component of the
SC state produced the photon; otherwise, we will call the event
“indistinguishable.” If the emission is distinguishable, then the
SC state would collapse to a single collective state, and there
would be no interference [43,44]. The distinguishability of the
emission event will be determined by the size ofD. The relevant
length scale here is the wavelength of the emitted photon, λP .
For the D2 transition in Rb, λP ≈ 780 nm. Indistinguishability
would only hold forD<λP [14,45]. We also note here that the
dephasing caused by cavity decay is also “indistinguishable,”
since the cavity mode is much larger than the separation between
the two components of the SC state.

For the SC atomic clock mentioned earlier, as well as varia-
tions thereof for magnetometry or nuclear magnetic resonance,
this condition can be easily satisfied, since the recoil correspond-
ing to a microwave transition is very small. For example, for
the hyperfine transition in the ground state of 87Rb, the recoil
velocity is≈ 0.2 µm/s. As shown in Appendix A, a typical time
duration for the squeezing process to produce the cat state is
≈ 0.15 µs. Thus, during the squeezing process, the value of
D would be only ≈ 0.03 pm, far less than λP . Consider next
the case of the SCAIN, for which the recoil velocity would be
≈ 12 mm/s. At the point of maximum separation between
the two arms, the condition of D≈ λP would be reached for

a dark zone duration of ≈ 65 µs. For a typical dark zone dura-
tion used for accelerometry or rotation sensing, which is much
longer than this, the value of D would far exceed λP . However,
it should be noted that the squeezing process is carried out at the
onset of the splitting, and the unsqueezing happens after the two
paths have come back to each other (see Fig. 2). Thus, during
the squeezing/unsqueezing steps, each with a typical duration
of≈ 0.15 µs, the value of D would be only≈ 1.8 nm, which is
much smaller thanλP .

One must also take into account the possibility of spon-
taneous emission during the pulses other than those used for
squeezing and unsqueezing. For the SC atomic clock, this is not
an issue, since these pulses would employ microwaves. For the
SCAIN, this is important for the π pulse that reverses the direc-
tion of motion for the two arms, since the separation between
the two components of the cat state would typically be much
larger than λP at this point. However, by using strong laser
fields and large detunings for each leg of the Raman transition,
it should be possible to reduce the probability of a spontaneous
emission during this pulse to be adequately small.

We recall that cases with only one parity (even N) contribute
the signal with N-fold magnified fringes, while cases with the
other parity (odd N) contribute a vanishingly small signal.
While cavity decay (which is “indistinguishable,” as noted
above) and the “indistinguishable” spontaneous emission events
would not cause a collapse of the cat state, these would change
the parity of the coherent ensemble, defined as the atoms that
contribute to the coherent part of the signal [as defined in
Eq. (9)]. The final parity of the coherent ensemble at the end
of the protocol would determine whether it would contribute
to the N-fold magnified fringe signal or the vanishingly small
signal.

Finally, we consider the issue of potential loss of particles due
to collisions. As discussed, for example, in Refs. [43,44], this
can be of potentially significant concern in creating cat states of
Bose-condensed atoms. However, for the systems being consid-
ered here, the density of atoms is low enough to ignore collisions
among the atoms in the cat state. Collisions with background
atoms can also be made negligible by using ultrahigh vacuums
produced under cryogenic conditions [46,47]. For example,
in Refs. [45,48,49], which address this issue in the context of
attempts to create the macroscopic superposition of nanopar-
ticles, it has been shown that collisions with background atoms
become negligible for a vacuum of ≈ 10−16 Torr. Such pressures
have been previously realized in cryogenic environments [50].

6. DISCUSSION OF CLOSELY RELATED WORK

The basic concept underlying the protocol described in this
paper falls within the broad category of so-called interaction-
based readout (IBR) schemes [51]. A systematic discussion of
the IBR schemes can be found, for example, in Ref. [19]. In this
reference, many different versions of IBR schemes are discussed,
including one that has similarities to the protocol described
here. In another paper [21], the authors analyze an IBR scheme
that also has similarities to our protocol. In Ref. [52], a system-
atic study is carried out to determine the maximum possible
robustness against excess noise. This study concludes that our
protocol, along with similar ones presented in Refs. [19,21],
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achieves the maximum possible sensitivity against excess noise.
The optimal robustness against excess noise for a different IBR
scheme employing twist-and-turn entanglement is investi-
gated in Ref. [20]. Indeed, Refs. [20,21,52] have all cited the
arXiv paper describing our protocol [35]. The authors noted
in Ref. [52] that the robustness of our protocol against excess
noise is ostensibly stronger than that of the corresponding
protocol in Ref. [19], attributing the difference to the fact that
the noise model used by us (which is akin to the one used in
Ref. [11]) is different from the one used in Ref. [19]. Similarly,
the robustness of our protocol is ostensibly stronger than that
of the protocol in Ref. [21], for the same reason. While the
maximum robustness protocols presented in Refs. [19,21] are
similar to ours, we note that the details of our protocol contain
significant differences and augmentations, as discussed next.

An important aspect of what we describe in this paper is
the challenge in implementing this protocol for large number
of cold atoms released from a magneto-optic trap. For such a
scenario, the parity of the number of atoms N (i.e., whether N
is even or odd) is not known. On the other hand, the protocol
produces very different signals for even versus odd values of N.
What we show is that one can choose to operate the protocol
designed, for example, for even values of N. For instances where
N is odd, this protocol will produce a vanishingly small signal so
that when averaged over many instances, the net signal would
correspond approximately to running the protocol for even
values of N only, with the effective number of N being reduced
by a factor of ∼2. Reference [52] notes that different proto-
cols are necessary for odd versus even values of N. However,
it does not show what happens if a fixed protocol is used while
the system has randomly occurring odd and even values of N.
References [19,21] do not consider this issue at all.

Another important issue addressed in this paper is the appli-
cation of the protocol to an atomic interferometer, where the
trajectories of the two paths get physically separated spatially,
thus requiring the application of an additionalπ pulse. We have
considered the application of the protocol to this case explicitly;
Refs. [19,21,52] do not consider this case. It should also be
noted that in Refs. [19,52], the detection requires measurement
of the population of all collective states. This is distinctly dif-
ferent from our protocol, where, for the case that produces the
maximal robustness against excess noise, we measure the mean
value of all the pseudospins in the z direction (a process referred
to as conventional detection in this paper).

In Refs. [19,21,52], the robustness of the protocol against
excess noise is explained by showing how the Fisher informa-
tion is influenced in the presence of excess noise. While this
is certainly correct, it does not seem to provide a simple and
transparent reason for the robustness. In contrast, we have in
this paper offered a simple explanation of the robustness, which
is as follows. In this protocol, the signal fringes are amplified by
a factor of N, while the quantum projection noise is magnified
by a factor of

√
N more than the noise under the SQL, reaching

a value of N. Thus, it is clear that the classical noise would only
become relevant (reducing the sensitivity by a factor of

√
2)

when it is very large, namely, equaling N.
We also show explicitly how the measurement basis very

strongly affects the robustness against excess noise. Specifically,
we show that if one chooses to measure the population of one

of the extremal collective states, the process is as sensitive to
classical noise as conventional techniques (such a two-axis-
counter-twist squeezing), so that a classical noise of unity
would reduce the sensitivity by a factor of

√
2. In contrast,

when the mean value of all the pseudospins in the z direction is
measured, the excess noise has to be very large (namely, N) for
the sensitivity to drop by a factor of

√
2.

Most important, in this paper we have addressed, in explicit
and quantitative details, the critical question of the effect of dis-
sipation during the one-axis-twist squeezing process employing
an optical cavity. Specifically, we have shown, employing the
cavity input–output relation and the density matrix formulation
involving Langevin noise operators, how the effects of the dis-
sipative processes are strongly suppressed due to the fact that
the protocol entails phase magnification by a factor of N, and
enhanced quantum noise by a factor of

√
N. We thus find that

the maximal achievable sensitivity is very close to the ideal limit,
as shown in Fig. 6. This contrasts with the findings of a similar
analysis carried out in Ref. [11] for the echo squeezing protocol.
In that case, the dissipation during the cavity-mediated one-
axis-twist squeezing process limits the maximum achievable
sensitivity to a value far below the ideal value. In Ref. [21], a brief
discussion is presented regarding the effect of dissipation during
the readout process only. However, this discussion is presented
in the context of a generalized dissipation parameter, and does
not describe the experimental conditions that would correspond
to a given value of the dissipation parameter. In contrast, we
have considered explicit experimental parameters, such as the
cavity cooperativity parameter, the number of atoms, and the
laser power in the probe, and shown that a sensitivity value very
close to the ideal limit is achievable for experimentally accessible
values of these parameters. References [19,52] do not address
this issue of dissipation during the squeezing and unsqueezing
processes.

7. CONCLUSION

Atomic precision metrology is of importance for practical appli-
cations, such as time keeping, rotation sensing, accelerometry,
and magnetometry. It also plays a key role in investigations of
fundamental physics, including searching for the electron’s elec-
tric dipole moment, tests of general relativity, and detection of
dark matter. Under ideal conditions, the sensitivity of an atomic
sensor is at the SQL, dictated by the quantum projection noise.
This limit can be circumvented by making use of entangled
states of atoms. In particular, the use of highly entangled states
can enable one to reach the HL, which represents an improve-
ment by a factor of

√
N, where N is the number of atoms

interrogated. However, such a process is typically more sensitive
to excess noise than conventional sensors. Here we described
a protocol for an atomic interferometer that can reach the HL
of sensitivity while also being more insensitive to excess noise
than a conventional sensor. Using spin squeezing, the sensitivity
can be increased, either by lowering the quantum noise or via
phase amplification, or a combination of both. In this paper,
we have shown how to increase the sensitivity to the HL, while
increasing the quantum noise by

√
N, thereby suppressing by

the same factor the effect of excess noise. The protocol makes
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use of a SC state representing a mesoscopic superposition of
two collective states of N atoms. We show that the N-fold phase
magnification can be produced under two different methods of
detection: one where the population of an extremal collective
state is measured, and the other where the mean value of the
pseudospins of all atoms is measured. However, the suppression
of sensitivity to excess noise is achieved if the latter method is
used, while the former method makes it extremely sensitive
to excess noise. We show how the signals for a given protocol
produce drastically different signals for different parities of N,
for both detection methods. For a system that produces both
odd and even values of N with equal probability, such as atoms
released from a magneto-optic trap, we show that averaging
over many instances approximately filters out the signal for one
parity, thus allowing a sensitivity that is within a factor of

√
2 of

the HL, while maintaining the robustness against excess noise.
We have shown both numerical and analytical results for the
ideal behavior of the SC-state-based atomic interferometer. We
have also discussed potential experimental constraints for imple-
menting this scheme, using one-axis-twist squeezing employing
the cavity feedback scheme, and shown that the effects of cavity
decay and spontaneous emission are highly suppressed due to
the N-fold phase magnification. We have found that even for a
modest value of the cavity cooperativity parameter of the order
of 0.01, which should be readily accessible experimentally, the
maximum improvement in sensitivity can be very close to the
ideal limit for as many as 10 million atoms. We also discuss
related protocols that have been proposed recently and point out
the similarities and differences of these from what is proposed
here. We believe that the concepts proposed here pave the way
for realizing atomic interferometers—as well as other atomic
sensors based on the excitation of pseudospins in an effective
two-level system, such as a clock or a magnetometer—with
a sensitivity very close to the HL without requiring rigorous
suppression of excess noise for a range of parameters that are
rather easily accessible experimentally.

APPENDIX A: EFFECTIVE EQUATIONS OF
MOTION AND SCALING OF EXPERIMENTAL
PARAMETERS FOR ONE-AXIS-TWIST
SQUEEZING VIA CAVITY FEEDBACK

Here we derive an effective equation of motion for the one-axis-
twist squeezing process employing the cavity feedback scheme,
and analyze how the strength of the squeezing process scales
with experimental parameters. The derivation of the effective
equation of motion follows steps similar to those found in the
supplement of Ref. [11]. However, we briefly repeat the essential
steps here, since our notations are different, and spell out some
of the steps not explicitly shown there; furthermore, there are
some small, although non-critical, discrepancies between the
results reported there and what we find here. For specificity, we
consider 87Rb as the atomic medium, with the spin-up state
corresponding to the 5S1/2, F = 2, mF = 0 Zeeman sublevel,
and the spin-down state corresponding to the 5S1/2, F = 1,
mF = 0 Zeeman sublevel. The intermediate state is assumed to
be the 5P3/2 manifold. We also assume the matrix element for
the coupling to the intermediate state to be the same for both
spin-up and spin-down states; in practice, a detailed numerical

model that takes into account the choice of the polarization of
the probe mode and the corresponding coupling to the relevant
Zeeman sublevels for each hyperfine state within the 5P3/2

manifold has to be employed. In addition, we assume that the
intermediate state decays equally, via spontaneous emission, to
both ground states; again, in practice, a more detailed numerical
model of spontaneous emission from all Zeeman sublevels has
to be taken into account. In order to avoid the variation in the
probe intensity that occurs in a standing wave cavity, it would
be necessary to use a linear cavity consisting of three mirrors,
as shown in Fig. 12 of Ref. [18], with one of the mirrors being
a perfect reflector and each of the other two being a partial
reflector. However, for simplicity of analysis, in what follows
we consider a two-mirror cavity with a length of L meters, an
effective mode area of A, and a reflectivity of R for each mirror.
The input–output relation for such a cavity can be expressed as
[53,54]

˙̂ã =−
κ

2
ˆ̃a + iδ ˆ̃a +

√
κexξ +

√
κo
ˆ̃f . (A1)

Here the detuning is defined as the difference between the
probe frequency (ωp ) and the cavity resonance frequency
(ωc ): δ =ωp −ωc . The input probe field is assumed to be
classical, defined as αin = ξexp(−iωp t), with a mean value of
|ξ | =

√
Nin, where Nin is the number of photons incident on

the cavity in 1 s. The slowly varying amplitude of the field inside
the cavity, transformed to a frame rotating at the frequency
of the probe, is defined as ˆ̃a = âexp(iωp t). The rate of decay
of the intracavity intensity through the input mirror is defined
as κex, and any additional decay (including the decay through
the output mirror) is defined as κo , so that the net rate of decay
is κ = κex + κo . Finally, the Langevin force operator in the last

term of Eq. (A1) obeys the relations [ ˆ̃f (t), ˆ̃f † (t ′)] = δ(t − t ′)

and 〈 ˆ̃f 〉 = 0. Below, we assume that κex = κo = κ/2, since both
mirrors have the same transmissivity, and other potential losses
are ignored.

The Hamiltonian for the whole system, including the atoms,
the probe field inside the cavity, and the interaction among
them, can be written as

H = Hcav + Hatm + Hint + Hsrc. (A2)

The four components of the Hamiltonian are defined as follows
[11,54] (setting~= 1):

Hcav =ωc â †â ,

Hatm =

N∑
j=1

[21|↑〉〈↑| j + (ωc +1)|m〉〈m| j ],

Hint =

N∑
j=1

[g â |m〉〈↑| j + g â |m〉〈↓| j + h.c.],

Hsrc =
√
κ/2[iξ â †e−iωp t

− iξ ∗â e iωp t
], (A3)

where g is the vacuum Rabi frequency for the cavity mode.
The density operator ρ for the atoms and the cavity mode

obeys the following equation of motion:
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ρ̇ =−i[H, ρ] + D(L cd)ρ +

N∑
j=1

D(L↑, j )ρ +

N∑
j=1

D(L↓, j )ρ,

(A4)
where we have defined

D(L)ρ = LρL†
−

1

2
{L†L, ρ}. (A5)

The Lindblad operator corresponding to cavity decay is
L cd =

√
κ â , and those corresponding to spontaneous emission

are L↑ =
√
0/2|↑〉〈m| and L↓ =

√
0/2|↓〉〈m|.

Coherent excitation of the atoms only populates the (N + 1)
symmetric collective states [14–16]. However, the total number
of collective states, including the asymmetric ones, is 2N , the
size of the Hilbert space for N two-level atoms [16]. All of these
states must be taken into account when considering the effect of
spontaneous emission, which can couple to both symmetric and
asymmetric states. Thus, even for a modest number of N that
would be relevant for a SCAIN, such an analysis is intractable.
As such, we will account for the effect of spontaneous emission
heuristically and exclude the Lindblad operators corresponding
to spontaneous emission (this is the same approach used, for
example, in Ref. [11]).

Since the probe is highly detuned with respect to the two
legs of the3 transition in Fig. 5, the intermediate state |m〉 can
be eliminated adiabatically, using the approach developed in
Ref. [55]. The resulting Hamiltonian then can be expressed as

H = (ωc + ε Ĵ z)â †â + 21 Ĵ z +
√
κ/2[iξ â †e−iωp t

− iξ ∗â e iωp t
],

(A6)

where ε = 2g 2/1 is the difference between the single-photon-
induced light shifts experienced by the spin-up and spin-down
states, which are equal and opposite in sign. We now transform
into a frame rotating at HA ≡ (ωp â †â + 21 Ĵ z), which results
in the following form of the Hamiltonian:

H =
(
− δ + ε Ĵ z

)
â †â +

√
κ/2[iξ â †

− iξ ∗â ]. (A7)

It is now evident from the term in the first bracket of Eq. (A7)
that the detuning of the probe away from cavity resonance is
modified by the light shift of the atoms. The Lindblad operator
for cavity decay under this transformation picks up a time-
dependent phase factor: L cd =

√
κ âexp(−iωp t). However,

since the phase factor does not change D(L cd)ρ [see Eq. (A5)],
we can write that effectively as L cd =

√
κ â .

Next, we assume that the intracavity field can be treated
as the sum of a classical field and a weak quantum field:
â = (α + q̂), where 〈q̂〉 = 0. We define the classical part as
α = ζ exp (−iωp t), so that 〈 ˆ̃a〉 = ζ . The steady-state solution
of Eq. (A1) then yields (with κex = κ/2)

ζ =

√
κ

2

ξ

(κ/2− iδ)
. (A8)

The Hamiltonian now can be written as H = Ha + Hb +

Hc , where

Ha =−δq̂ †q̂ + ε J z[|α|
2
+ q̂ †q̂ + α∗q̂ + αq̂ †

]
↔

I ,

Hb =−δ|ζ |
2
+ |ξ |2

√
κ/2

[
2δ

δ2 + κ2/4

]
,

Hc = i(κ/2)
[
αq̂ †
− α∗q̂

]
, (A9)

and the cavity-decay Lindblad operator becomes L cd =√
κ(α + q̂). Since Hb does not involve any operators, it can

be transformed out trivially, yielding H = Ha + Hc and
L cd =

√
κ(α + q̂). Furthermore, it can be shown easily that the

equation of motion for the density matrix remains unchanged
when this combination of the Hamiltonian and the cavity-decay
Lindblad operator is replaced by the combination of H = Ha

and L cd =
√
κ q̂ .

Adiabatic elimination of the weak cavity mode q̂ , again using
the approach developed in Ref. [55], yields the following expres-
sions for the effective Hamiltonian and the Lindblad operator
for the spin dynamics:

H = χ J 2
z , L =

√
(2χ/δ̃)J z, (A10)

with the squeezing parameterχ given by

χ = δ̃(1+ δ̃2)−2
|ξ |2ε̃2, (A11)

where we have defined the probe detuning (away from cavity
resonance) normalized to the half-width of the cavity resonance
as δ̃ ≡ δ/(κ/2) and the single-photon-induced differential light
shift for each atom normalized to the half-width of the cavity
resonance as ε̃ ≡ ε/(κ/2). Finally, as noted earlier, the quantity
|ξ |2 represents the number of photons incident on the cavity per
second.

An important factor that determines the degree of fidelity
achievable in the squeezing process is the single-atom cooper-
ativity, defined as C ≡ 4g 2/(κ0). In terms of this factor, the
squeezing parameter can be expressed as

χ = δ̃(1+ δ̃2)−2
|ξ |2C2(0/1)2. (A12)

As an example, consider a linear cavity with length L , effec-
tive mode area A, and transmissivity T for each end mirror.
We then find that C =A/(AT), where A= 8π~ωp0/ISAT,
with ISAT being the saturation intensity for each leg of the 3
transition. For 87Rb atoms, assuming that ISAT is twice that
of the cycling transition, we get A≈ 3.6 ∗ 10−12 m2. For a
mirror with a reflectivity of 99.999%, so that T = To= 10−5,
and a mode area of (20 ∗ 10−6 m)2, we get C ≈ 900. If we
define the mode area to be D2, and a reference value of D to be
Do = 20 ∗ 10−6 m, then we get C ≈ 900 ∗ (Do/D)2(To/T).
If we denote as P the incident power, with a reference power of
Po = 10−3 W and a reference normalized detuning of δ̃o = 102,
we then get (in units of s−1)

χ ≈ 108(δ̃o/δ̃)
3(P/Po )

2(Do/D)4(To/T)2. (A13)

Thus, for δ̃ = δ̃0, P = Po , D= Do and T = To , the time
needed to produce the SC state would be tSC ≡ π/2χ ≈ 15 ns.
For a more moderate choice of parameters, e.g., D= 10Do and
T = 10To , we have C ≈ 0.9 and tSC ≈ 15 µs. If we increase the
power to P = 10Po= 10−2 W, which is still very modest, we get
tSC ≈ 0.15 µs.
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