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Abstract: A point source interferometer (PSI) is a device where atoms are split and recombined
by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms
behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that
can automatically filter out the signal from accelerations. The phase shift arising from the rotations
is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by
increasing the momentum transfer, it should be possible to enhance the sensitivity of the PSI. Here,
we investigate the degree of enhancement in sensitivity that could be achieved by augmenting the PSI
with large momentum transfer (LMT) employing a sequence of many Raman pulses with alternating
directions. We analyze how factors such as Doppler detuning, spontaneous emission, and the finite
initial size of the atomic cloud compromise the advantage of LMT and how to find the optimal
momentum transfer under these limitations, with both the semi-classical model and a model under
which the motion of the center of mass of each atom is described quantum mechanically. We identify
a set of realistic parameters for which LMT can improve the PSI by a factor of nearly 40.

Keywords: quantum gyroscope; atom interferometry; point source atom interferometer

1. Introduction

Atom interferometry offers the potential to deliver high-performance, compact, and
robust gyroscopes that are suitable for inertial navigation applications. Critical require-
ments for such an atomic gyroscope include a high sensitivity to rotations and the ability
to distinguish between signals arising from rotations and accelerations. Here, we describe
a multi-axes gyroscope based on the combination of point source interferometry (PSI) [1–3]
and large momentum transfer (LMT) beam splitters [4,5] which are well-suited to meet
these requirements. In a PSI, Raman pulses are applied during the expansion of a point
source of atoms. The pulses are a pair of counter-propagating laser beams that drive
two-photon Raman transitions [6], serving as the beam splitters and mirrors for a Mach–
Zehnder light-pulse atom interferometer [7–13], as shown in Figure 1. The interferometer
phase response to rotation scales linearly with the velocity difference of the atoms in the
two arms, while the response to acceleration is independent of the atomic velocity. Because
of this difference, the signal in a PSI allows rotation and acceleration to be distinguished.
The PSI can also determine both components of the rotation vector that are orthogonal
to the laser pulses, thus realizing a multi-axes gyroscope. It should be noted that there
are other techniques that can also distinguish between rotation and acceleration [9–13].
However, a key practical advantage of the PSI is that it only requires a single atom cloud
and Raman beams along a single axis, in contrast to other methods.
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The LMT beam splitters we consider involve the use of tailored laser pulse sequences 
to increase the momentum splitting, and therefore the velocity difference, between the 
two arms of the interferometer. Via the Sagnac effect, the rotation sensitivity of a gyro-
scope is proportional to the area enclosed by an interferometer. The enclosed area is pro-
portional to the velocity difference induced by the beam splitter; as such, the rotation sen-
sitivity scales linearly with the momentum transferred by the laser pulses during the beam 
splitting process. 

 

 
Figure 1. Schematic illustration of the basic process underlying the conventional PSI. The blue circle 
is the atom cloud and the red arrows are the Raman pulses. A temporal sequence of Raman pulses 
is applied during the expansion of the atom cloud (top), and each Raman pulse is a pair of counter-
propagating light beams that drive a two-photon transition (bottom). 

The conventional model of the light-pulse interferometer as well as the PSI makes the 
approximation that each atom has a well-defined velocity as well as a well-defined posi-
tion. This model is apparently inadequate for describing the behavior of a PSI accurately 
for several reasons. The first is that the wave packets of cold atoms cover large spatial 
extents and thus do not have trajectories that enclose a well-defined area. The second is 
that atoms are in superpositions of many momentum eigenstates, with each of them see-
ing a different light frequency. Yet the model has proven to be quite useful in predicting 
the behavior of a light-pulse interferometer as well as the PSI in most circumstances of 
experimental relevance. As such, in the initial stage of our analysis, some of the salient 
features of the effect of large momentum transfer on the PSI are extracted from the con-
ventional model. Later on, we augment the analysis with a more rigorous model wherein 
the center of mass motion of each atom is treated quantum mechanically, represented as 
a superposition of plane waves, since it is not a priori obvious, without experimental re-
sults, whether the semiclassical model would be adequate when the PSI is augmented by 
large momentum transfer. 

The rest of the paper is organized as follows. In Section 2, we use the conventional 
model to summarize first the basic properties of a PSI without large momentum transfer 
(LMT). We then use the same model to determine how the signal for a PSI would be mod-
ified in the presence of LMT, without taking into account non-idealities such as Doppler 
detuning and spontaneous emission. We also describe how the signal for an LMT–PSI is 
modified when the point source is replaced by a source with a finite extent and determine 
how the enhancement in sensitivity varies as function of the degree of momentum transfer 
under the LMT process, as well as the initial size of the source. In Section 3, we present 
the augmented quantum model where the center mass motion of the atom is treated quan-
tum mechanically. We consider first the ideal case where an atom is in a pure state. This 
is followed by a consideration of a situation where the atoms are thermalized in a har-
monic oscillator potential before being released for the LMT–PSI process, taking into 

Figure 1. Schematic illustration of the basic process underlying the conventional PSI. The blue
circle is the atom cloud and the red arrows are the Raman pulses. A temporal sequence of Raman
pulses is applied during the expansion of the atom cloud (top), and each Raman pulse is a pair of
counter-propagating light beams that drive a two-photon transition (bottom).

The LMT beam splitters we consider involve the use of tailored laser pulse sequences
to increase the momentum splitting, and therefore the velocity difference, between the two
arms of the interferometer. Via the Sagnac effect, the rotation sensitivity of a gyroscope is
proportional to the area enclosed by an interferometer. The enclosed area is proportional to
the velocity difference induced by the beam splitter; as such, the rotation sensitivity scales
linearly with the momentum transferred by the laser pulses during the beam splitting
process.

The conventional model of the light-pulse interferometer as well as the PSI makes the
approximation that each atom has a well-defined velocity as well as a well-defined position.
This model is apparently inadequate for describing the behavior of a PSI accurately for
several reasons. The first is that the wave packets of cold atoms cover large spatial extents
and thus do not have trajectories that enclose a well-defined area. The second is that atoms
are in superpositions of many momentum eigenstates, with each of them seeing a different
light frequency. Yet the model has proven to be quite useful in predicting the behavior
of a light-pulse interferometer as well as the PSI in most circumstances of experimental
relevance. As such, in the initial stage of our analysis, some of the salient features of the
effect of large momentum transfer on the PSI are extracted from the conventional model.
Later on, we augment the analysis with a more rigorous model wherein the center of mass
motion of each atom is treated quantum mechanically, represented as a superposition of
plane waves, since it is not a priori obvious, without experimental results, whether the
semiclassical model would be adequate when the PSI is augmented by large momentum
transfer.

The rest of the paper is organized as follows. In Section 2, we use the conventional
model to summarize first the basic properties of a PSI without large momentum transfer
(LMT). We then use the same model to determine how the signal for a PSI would be
modified in the presence of LMT, without taking into account non-idealities such as Doppler
detuning and spontaneous emission. We also describe how the signal for an LMT–PSI is
modified when the point source is replaced by a source with a finite extent and determine
how the enhancement in sensitivity varies as function of the degree of momentum transfer
under the LMT process, as well as the initial size of the source. In Section 3, we present the
augmented quantum model where the center mass motion of the atom is treated quantum
mechanically. We consider first the ideal case where an atom is in a pure state. This is
followed by a consideration of a situation where the atoms are thermalized in a harmonic
oscillator potential before being released for the LMT–PSI process, taking into account
quantum statistics. We conclude this section with a discussion of how the results of this
augmented quantum model compare with those of the conventional semi-classical model
under various conditions. Specifically, we find that for thermal atoms, the predictions of
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these two models do not differ significantly. In Section 4, we analyze the combined effect
of all non-idealities, including Doppler detuning, spontaneous emission, and the finite size
of the source, using the augmented quantum model. However, in order to be able to carry
out an analytical estimation of the enhancement in sensitivity expected for a significant
degree of LMT, we make some simplifying assumptions that render the model essentially
equivalent to that of the conventional semi-classical model. We expect that a full-blown
version of the augmented quantum model would produce results that agree closely with
the conclusions reached in this section. But such a full-blown analysis requires enormous
computational resources; given that the difference between the results produced by the
semi-classical analysis and the augmented quantum model is very small, undertaking such
an analysis was not deemed critically important at this point. Instead, it is expected, subject
to experimental verification, that the predictions of the effectively semi-classical model
would be adequate. Finally, we summarize the results in Section 5.

2. Conventional Model

As noted above, the conventional model of a PSI makes the approximation that
each atom has a well-defined velocity as well as a well-defined position. Therefore, the
atoms follow definitive trajectories that enclose an area. Specifically, the enclosed area
is A = (r/2) × (}ktT/m), where }kt is the differential momentum transferred to an
atom from the initial light pulse, r is the displacement of the atoms, T is half of the
total time elapsed, from splitting to recombination, and m is the mass of each atom [14].
The Sagnac phase shift is proportional to the enclosed area according to the expression
φ = 2ωCΩ ·A/c2, where ωC = mc2/} is the Compton frequency of each atom [15], and Ω
is the angular velocity of the rotation. It then follows that the phase shift can be expressed
as φ = (kt ×ΩT) · r ≡ kΩ · r. The measured signal is the spatial distribution of the
ground state population, given by the expectation value of the projection operator Pg(r) ≡
|g, r〉〈g, r|. As such, the signal can be expressed [8] as

〈
Pg(r)

〉
= f (r)(1 + cos kΩ · r)/2,

which is a pattern of spatial fringes dictated by the wave number kΩ, multiplied by f (r),
the final profile of the atomic cloud. With this model, it seems obvious that by increasing kt,
we can increase kΩ, thus reducing the fringe spacing, and thereby increasing the sensitivity
of the PSI.

To determine quantitatively the density of fringes, we have to compute the Fourier
transform of the pattern. Experimentally, this Fourier transform can be observed in real
time using a lens in the system for imaging the atom cloud. Thus, our signal is expressed

as P̃g

(
~
k
)

=
∫

dr e−i
~
k·r〈Pg(r)

〉
, where Pg(r) is the position space projection operator for

atoms in the ground state, as defined earlier. It should be noted that P̃g

(
~
k
)

is different

from Pg(k) ≡ |g, k〉〈g, k|, the momentum space projection operator for atoms in the ground
state. The semi-classical model gives a signal that can be expressed as:

P̃g

(
~
k
)
= F

[
1
2

f (r)(1 + cos kΩ · r)
]
=

1
2

f̃
(

~
k
)
+

1
4

f̃
(

~
k− kΩ

)
+

1
4

f̃
(

~
k + kΩ

)
(1)

where f̃
(

~
k
)
≡ F [ f (r)] is the Fourier transform of the profile of the atomic cloud. The

spatial fringes representing
〈

Pg(r)
〉

and the corresponding Fourier transforms given by

P̃g

(
~
k
)

derived from the semi-classical model are depicted in Figure 2. Panel A shows

plots for kt = keff and panel B shows plots for kt = 3keff. In each panel, (a) is the plot of〈
Pg(r)

〉
= f (r)(1 + cos kΩ · r)/2, with f (r) = exp

(
−r2/2σ2

f
)
, in the plane perpendicular

to kt, (b) is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the

plane perpendicular to kt, and (d) is the cross section at the dashed line of (c). In the
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Fourier domain, the distance from a signal peak, for example, f̃
(

~
k− kΩ

)
/4, to the central

peak f̃
(

~
k
)

/2, is kΩ, which is proportional to the angular velocity we want to measure.

The height of the signal peak h corresponds to the contrast of the fringes, and ideally
hideal = 1/4.
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Panel A corresponds to kt = keff and Panel B corresponds to kt = 3keff. In each panel, (a) is the plot
of
〈

Pg(r)
〉
= f (r)(1 + cos kΩ · r)/2, with f (r) = exp

(
−r2/2σ2

f
)
, in the plane perpendicular to kt, (b)

is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the plane perpendicular to

kt, and (d) is the cross section at the dashed line of (c). The orientation of the signal indicates the
direction of the angular velocity.
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In this model, for an ideal point source, the final position of an atom is determined by
its initial velocity. The velocity spread of the atoms is given by the Boltzmann distribution
characterized by the temperature of the atomic cloud. Therefore, the final population
distribution of the atoms has a three-dimensional Gaussian profile, exp

(
−r2/2σ2

f
)
, where

σf describes the final size of the atomic cloud, determined by the initial velocity spread and
the expansion time. Thus, the final spatial distribution of the ground state atoms can be
expressed as nps(r) ≡

〈
Pg(r)

〉
= exp

(
−r2/2σ2

f
)
(1 + cos kΩ · r)/2. In the plots shown in

Figure 2, we assumed such a Gaussian envelope for the ground state populations, with
an arbitrarily chosen value of σf. Here, Figure 2a in each panel is simply a plot of this
expression for nps(r).

This model can also be used to analyze the effect of the finite size of the initial
atomic cloud. For this analysis, we assumed that the Raman pulses were along the z-
direction, while the angular velocity vector was in the y-direction. Then the interference
fringes were oriented in the x-direction. For simplicity, we looked at a slice of the atomic
cloud in the x-direction, for y = z = 0. The population in this slice can be expressed as
nps(x) = exp

(
−x2/2σ2

f
)
(1 + cos kΩx)/2. The initial cloud of a finite size is a collection of

the many ideal point sources. We assumed the initial distribution of the atomic cloud to
be of the form n0(x) = exp

(
−x2/2σ2

0
)
. The final spatial distribution of the ground state

atoms is then the convolution of n0 and nps:

nf =
∫

n0(x0)nps(x− x0)dx = n0 ∗ nps (2)

It is easy to see that nf has the form of (1 + 4h cos k′Ωx)/2 where [2]

k′Ω = kΩ

[
1− (σ0/σf)

2
]

(3)

h = hideal exp

(
−1

2
k2

Ωσ2
0

[
1−

(
σ0

σf

)2
])

(4)

Equation (3) implies that the signal peak is at a distance k′Ω away from the central
peak in the Fourier transform domain. Thus, if the point source has a finite size, the signal
peak moves closer to the central peak and the height of the signal peak is reduced. The
uncertainty in the position of the signal peak δk′Ω in turn determines the uncertainty in the
determination of Ω. Specifically, from the expression of kΩ stated earlier, and assuming
that kt is orthogonal to Ω, it follows from Equation (3) that δΩ = δk′Ω/ktT

[
1− (σ0/σf)

2
]
.

In general, the uncertainty of a signal is the linewidth divided by the signal-to-noise ratio.
Using this rule, we can write that δk′Ω = βγ/

√
h, where γ is the width of the signal peak

and β is a constant coefficient. It then follows that (δΩ)−1 = ktT
√

h
[
1− (σ0/σf)

2
]
/βγ.

Since the signal is in the Fourier transform domain, γ is approximately the inverse of the
final size of the atomic cloud. Therefore, γ is determined primarily by the free expansion
and is not affected significantly by the LMT process. Thus, we see that the larger the final
atomic cloud size is, the smaller γ is, and the smaller δΩ is. This reduction in δΩ can
be understood physically by noting first that the width (i.e., γ) of each of the peaks in
the Fourier Transform domain becomes smaller for larger final atomic clouds. Since the
uncertainty in the measured value of the rotation rate is proportional to this width, it then
follows that a larger final atomic cloud yields a smaller value of δΩ.

To compare LMT–PSI’s with different values of kt = Nkeff, we assumed that the
atomic clouds ended up with the same final size, and therefore the same γ, indepen-
dent of the value of N. We defined an improvement parameter ε ≡ δΩNkeff

/δΩkeff
=

N
[
1− (σ0/σf)

2
]√

hNkeff
/hkeff

. In experiments, the final size of the atomic cloud is deter-
mined by the size of the apparatus, and thus can be considered a rigid constraint. For
concreteness, we assumed the value of σf to be 1 cm. We also assumed the initial tem-
perature to be 6 µK, a value that can be achieved typically with optical molasses [2]. The
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expansion time is related to the initial and final sizes of the atomic cloud according to the
expression σ2

f = σ2
0 + (kBTK/m)(2T)2. In Figure 3, we show a plot of the improvement

factor versus the momentum transfer, with two different initial sizes of the atomic cloud
and two angular velocities. The red curves are the plots for σ0 = 0.1 mm while the blue
curves are for σ0 = 0.2 mm. The solid (dashed) curves correspond to an angular velocity of
1 (2) µHz. We can see that LMT can improve the PSI more for smaller initial atomic clouds
and for measuring a smaller angular velocity.
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(dashed) curves correspond to an angular velocity of 1 (2) µHz.

As noted earlier, even though the semi-classical model has been highly accurate in
predicting the behavior of a light-pulse interferometer as well as a PSI, it is potentially
useful to employ a more rigorous model that treats the center of mass motion of each atom
quantum mechanically [16], since it is not evident a priori whether the semi-classical model
would lead to correct predictions of observables when the point source interferometer is
augmented by large momentum transfer. As such, in what follows, we present such a
quantized model to augment the description of the LMT–PSI.

3. Augmented Quantum Model

The quantum state of an atom consists of its internal state and the state of its center
of mass. Each atom in a PSI starts with its internal state as the ground state |g〉. We
first considered the case where the center of mass of the atom is initially in a momentum
eigenstate |k〉. The evolution of the state of the center of mass is illustrated in Figure 4. The
first atomic beam splitter propagating in the z-direction splits the atom into a superposition

of the state
∣∣∣∣k− k∗

^
z
〉

and the state
∣∣∣∣k + (kt − k∗)

^
z
〉

. Here, ktẑ is the difference in the

momentum between the two arms, and k∗ ẑ is the common shift in the momentum for
each arm. The value of k∗ is zero for a conventional light-pulse atom interferometer but
it has a non-zero value when the technique of LMT is employed. The value of both kt
and k∗ depend on the details of the LMT process. For simplicity, we worked in a picture

where the energy of the state
∣∣∣∣k− k∗

^
z
〉

and the state
∣∣∣∣k + (kt − k∗)

^
z
〉

were the same and
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defined as zero. The atomic mirror pulse is applied at a time T after the first atomic
beam splitter. Due to the rotation perpendicular to the z-direction, the atomic mirror
pulses are no longer in the original z-direction, but at an angle ΩT with respect to it. We
assumed that the angular velocity of the rotation was in the x-direction, without loss of
generality. For ΩT � 1, the atomic mirror pulses turn each atom into a superposition

of the state
∣∣∣∣k− k∗

^
z + ktΩT

^
y
〉
≡ |+〉 and the state

∣∣∣∣k + (kt − k∗)
^
z− ktΩT

^
y
〉
≡ |−〉. The

last atomic beam splitter will combine these two states approximately back to the point
k in the momentum space. The Sagnac phase shift can be viewed as arising from the
energy difference between the states |+〉 and |−〉. To see this, note first that the energies

of these two states are no longer zero, but }2
[
(ktΩT)2 ± 2ktΩTk · ^

y
]

/2m. Therefore,

these two states oscillate at frequencies that have a difference of 2}ktΩTk · ^
y/m. The

Sagnac phase shift is the product of this frequency difference and T, the duration for the

second half of the interferometry process: φ = 2}ktΩT2k · ^
y/m. It can also be written as

φ = 2}
(
kt ×ΩT2/m

)
· k ≡ rΩ · k, where kt ≡ k

^
z. Note that rΩ = 2}kΩT/m, and while it

has the dimension of distance, it does not represent the spatial coordinates of the center of
mass of the atom. It can be shown that this expression of the phase shift is equivalent to
the phase shift under the conventional description if we assign to a momentum eigenstate∣∣∣k′〉 a localized state with a velocity of }k

′
/m, determine the vectorial area A enclosed by

the resulting trajectories, and use the expression φ = 2m Ω ·A/}.
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Figure 4. The evolution of a momentum eigenstate |k〉 in the k−space in a PSI under rotation.
A k−eigenstate is a single dot in the k−space. The first atomic beam splitter splits |k〉 into a
superposition of two k−eigenstates separated by the momentum transfer kt. The atomic mirror
switches the position of the two k−eigenstates in the absence of rotation. In the presence of rotation,
however, the two k−eigenstates will be shifted in the ky− direction. The second beam splitter will
combine the two k−eigenstates and make them interfere.

Due to the rotation induced phase shift, the population of the ground state will be〈
Pg(k)

〉
= cos2(rΩ · k/2), where Pg(k) is the momentum space projection operator for

atoms in the ground state, defined earlier. Consequently, if initially the atoms have a
continuous distribution in the momentum space, the final distribution of the ground state
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population will form fringes in the momentum space. Next, we will discuss what the
fringes in the momentum space mean in the coordinate space.

Here, we considered both the cases where the atoms are in a pure state and in a mixed
state. If the atoms are in a pure state, then the external motion can be described by a
wavefunction ψk(k) for each atom. In the absence of rotation, the final external state of
the atom internally in the ground state will be ψk(k) exp

(
−i}k2(2T)/2m

)
. According to

the preceding discussion, in the presence of rotation, the final external state of the atom
internally in the ground state will be:

ψ′k(k) = ψk(k) exp

(
−i} k2

2m
2T

)
cos(rΩ · k/2) (5)

Rearranging Equation (5) and eliminating the common phase factor, we can write:

ψ′k(k) =
1
2

ψk(k)

[
exp

(
−i} (k + k1)

2

2m
2T

)
+ exp

(
−i} (k− k1)

2

2m
2T

)]
(6)

where k1 ≡ mrΩ/4}T = kΩ/2. To find the wavefunction of the atoms in the coordinate
space, we computed the Fourier transform of ψ′k(k), to obtain:

ψr(r) = F [ψ′k(k)]

= 1
2F
[

ψk(k) exp
(
−i} (k+k1)

2

2m 2T
)]

+ 1
2F
[

ψk(k) exp
(
−i} (k−k1)

2

2m 2T
)]

= 1
2F
[
ψk(k− k1) exp

(
−i} k2

2m 2T
)]

e−ik1·r + 1
2F
[
ψk(k + k1) exp

(
−i} k2

2m 2T
)]

eik1·r

≡ 1
2
[
ψ−(r)e−ik1·r + ψ+(r)eik1·r

]
(7)

where F stands for Fourier transform. The spatial distribution of the ground state〈
Pg(r)

〉
= |ψr(r)|2 for an arbitrary ψk(k) has to be calculated individually.

However, under the condition where the width of ψ′k(k) is much larger than |k1| so that

ψ−(r) ≈ ψ+(r), both ψ−(r) and ψ+(r)will approximately equalF
[
ψk(k) exp

(
−i}k2T/2m

)]
,

which is just the final external state of the atom internally in the ground state in the absence
of rotation, as discussed before Equation (5). In that case,

〈
Pg(r)

〉
is simply the product

of the final profile of the atom cloud and a sinusoidal function (1 + cos kΩ · r)/2. This is
exactly the result predicted by the conventional model for a point source.

The condition ψ−(r) ≈ ψ+(r), corresponding to a smaller difference between ψk(k− k1)
and ψk(k + k1), yields the highest contrast in the spatial interference fringes. A state
wider in the momentum space corresponds to a smaller difference between ψk(k− k1)
and ψk(k + k1). This condition also corresponds to a state narrower in the position space.
Therefore, for a pure state, the narrower it is in the position space, the higher the contrast is
for the spatial fringes. The limiting case of narrow wavefunctions in the position space is,
of course, the point source.

However, the centers of mass of all trapped atoms cannot generally be described as a
pure state. According to quantum statistical mechanics, the state of the center of mass of
each atom can be described by a density operator ρ = e−H/kBTK , where H is the Hamilto-
nian, kB is the Boltzmann constant, and TK is the temperature. If we assume the atoms to be
non-interacting and freely moving, we have H = (}k)2/2m, so that the state of the center of
mass of each atom is described by a density operator ρ =

∫
dk exp

[
−(}k)2/2mkBT

]
|k〉〈k|.

This density operator lacks coherence between different momentum eigenstates because
these are also the eigenstates of energy. For such a system, there will be no spatial fringes
at all. To see why, we recall that, for a pure state, the width in the k−space determines
the contrast of the spatial interference fringes. Every pure state in the density operator ρ
has no width in the k−space. Consequently, no spatial fringe will appear. The existence of
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coherence between different |k〉 states for atoms cooled by lasers have been demonstrated
in experiments [17–19]. Therefore, the diagonal density matrix is inadequate, and we need
a different model to describe the initial state of such cold atoms.

We considered a situation where the atoms released from a magneto-optic trap are
caught in an isotropic dipole force trap before the onset of the PSI process. Such a trap can
be modeled as a harmonic potential well [20] with a characteristic frequency ω, so that the
Hamiltonian can be expressed as:

H =
(}k)2

2m
+

1
2

mω2x2 (8)

The energy eigenstates of this Hamiltonian are:

|n〉 = a√
π1/22nn!

∫
dkHn(ka)e−(ka)2/2|k〉 (9)

where a =
√
}/mω is a measure of the size of the trap and Hn is the n-th order Hermite

polynomial. The density operator of the atoms in this case can be expressed as:

ρ =
∞

∑
n=0

exp
[
−}ω(n + 1/2)

kBTK

]
|n〉〈n| (10)

During the expansion of the atom cloud, upon release from the trap, each |n, g〉
(defined as the state where the external state is |n〉 and the internal state is |g〉) evolves in-
dependently. The evolution of each |n, g〉 under the sequence of pulses used for the PSI can
also be evaluated individually. We defined as ψn(k) the final external state corresponding
to |n, g〉, for an atom in the ground state internally. The signal at the end of the PSI process
can thus be expressed as:

〈
Pg(k)

〉
= tr

(
ρPg(k)

)
=

∞

∑
n=0

exp
[
−}ω(n + 1/2)

kBTK

]
|ψn(k)|2 (11)

where Pg(k) is the momentum space projection operator for atoms in the ground state, as
defined earlier. Equation (11) shows that the overall contrast is determined by the sum
of the fringes resulting from each energy eigenstate, |n, g〉. Therefore, the smaller a is, the
narrower all the energy eigenstates will be in the position space, and the higher the contrast
of the spatial fringes will be.

In Figure 5, we show a comparison between the signal of the PSI for two different
values of a. For simplicity, we have considered here the case where the rotation is around the
y-axis only, so that fringes occur only in the x-direction. For both curves, the temperature
of the atoms was TK = 0.1 nK, and the half expansion time T = 10 s. The rotation
rate wavenumber used was kΩ = 2π× 10 cm−1. The red curve shows the case where
a = 0.002 cm, and the blue curve shows the case where a = 0.004 cm. We can see that with a
smaller a, the contrast of the interference fringes was higher, as expected. In the simulation,
we assumed that the sum in Equation (11) was truncated at a maximum occupation number,
nmax, for the harmonic oscillator. This occupation number is dictated by the parameter
α ≡ kBTK/}ω. Specifically, the sum in Equation (11) was carried out from n = 0 to nmax = 4α
and rounded to the nearest integer, which is sufficient to ensure that contributions from
the excluded terms (i.e., for terms with n > 4α) were negligible. For the red curve, we had
α = 7.2 and for the blue curve α = 28.9.

To show the relationship between the augmented quantum model and the semi-
classical model, we considered the artificial case of a one-dimensional harmonic oscillator
along the x direction. The starting point was the density of atoms along the x-direction at
the onset of the PSI process. Since all the atoms were assumed to be in the ground internal
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state, this density distribution for the augmented quantum model can be determined from
the density operator in Equation (10) as follows:

〈
Pg(x)

〉
= tr

(
ρPg(x)

)
=

∞

∑
n=0

exp
[
−}ω(n + 1/2)

kBTK

]
|φn(x)|2 (12)

where Pg(x) ≡ |g, x〉〈g, x| is the projection operator for atoms in the ground state, and
φn(x) is the Hermite–Gaussian spatial wavefunction for the n-th eigenstate of the harmonic
oscillator. The corresponding density distribution according to the semi-classical model
and classical statistical mechanics can be expressed as:〈

Pg(x)
〉
≡ n0(x) = exp

(
−mω2x2/2kBTK

)
≡ exp

(
−x2/2σ2

0

)
(13)

It then follows that the initial cloud size parameter σ0 in the semi-classical model is
related to ω according to the expression σ0 =

√
kBTK/mω2. We recalled that the harmonic

oscillator scale parameter a in the augmented quantum model was related to ω according to
the expression a =

√
}/mω. Thus, we see that (σo/a)2 = kBTK/}ω = α. At a first glance,

it may not at all be obvious how the augmented quantum model density distribution as
given by Equation (12) is related to the semi-classical density distribution as given by
Equation (13). However, it turns out that for a highly thermal case, corresponding to
α� 1, these two distributions are essentially identical. This is not surprising, since a highly
thermal system generally behaves in a manner similar to what is expected classically.
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higher for smaller initial sizes. The rotation rate wavenumber used is kΩ = 2π× 10 cm−1.

We illustrate this correspondence in the top panel of Figure 6. In Figure 6a, we show
plots of this density distribution using the expressions from both the augmented quantum
model (red) of Equation (12) and the semi-classical model (dashed blue) of Equation (13).
The parameters used were σ0 = 0.1 mm, α = 10 and nmax = 40. The plots are almost
identical, and the difference is hard to infer from these plots. As such, in Figure 6b, we have
shown in the blue curve the difference between the density distribution for the augmented
quantum model and the semi-classical model for the plots shown in Figure 6a. In the
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red curve in Figure 6b, we have shown the corresponding difference when α = 20 and
nmax = 80, with the value of σ0 unchanged. Thus, we see that this difference, while small, is
real, and did not tend to vanish as the value of α increased.

Next, we considered the PSI interaction. The fringes produced by the augmented
quantum model (red) and the semi-classical model (dashed blue) are shown in Figure 6c.
The parameters used here were σ0 = 0.1 mm, σf = 1 mm, α = 10, nmax = 40, and
kΩ = 2π× 10 cm−1. Again, the plots are almost identical, and the difference is hard to infer
from these plots. As such, in Figure 6d, we have shown in the blue curve the difference
between the density distribution for the augmented quantum model and the semi-classical
model for the plots shown in Figure 6c. In the red curve in Figure 6d, we have shown the
corresponding difference when α = 20 and nmax = 80, with the value of σ0 and σf unchanged.
Again, we see that the difference, while small, is real, and does not tend to vanish as the
value of α is increased.
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We recall that, according to the Ehrenfest theorem, the behavior of the quantum
mechanical expectation values of the position and the momentum of a particle are identical
to their classical values if the Hamiltonian is at most quadratic in position as well as
momentum. The condition for the Ehrenfest theorem is satisfied for free space propagation,
as well as the Sagnac effect, which is modeled here as a simple rotation in the coordinate
system. On the other hand, the Hamiltonian representing the interaction with the light
fields for the PSI considered in Figure 6, has a spatial dependence of the form exp(iktz),
which is not consistent with the requirement of the Ehrenfest theorem. However, in the
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semi-classical model, the effect of such a Hamiltonian is considered quantum mechanically
(rather than classically), in assigning a momentum difference of }kt between the two arms.
As such, it is reasonable to conclude that the difference in the signals for the PSI computed
by these two models differ due to the difference in the initial density distributions only.

To summarize, for highly thermal atoms (kBTK � }ω) released from a harmonic
oscillator trap, the PSI signals predicted by the augmented quantum model would be very
similar to, although not exactly the same as, those predicted by the semi-classical model.
However, if kBTK ∼ }ω, this convergence of results will not occur. The extreme example is
the Bose-Einstein Condensate (BEC). The pure case considered above in fact corresponds
to the BEC (with the order parameter behaving as the single particle wavefunction) in
the ideal limit where the scattering length vanishes and there is no interaction among the
atoms [21]. As we have shown above, the PSI signal in that case would be the same as
that predicted for an ideal, point-source based PSI employing the semi-classical model,
but only in the limit where the initial momentum spread is much larger than kΩ. For the
realistic cases where the scattering length does not vanish, the augmented quantum model
would be more complicated due to non-linearity; such an analysis is beyond the scope of
this paper. Furthermore, it is not clear whether there is an effective semi-classical model for
a BEC, especially in this non-linear regime.

4. Large Momentum Transfer by Additional Raman Pulses

Large momentum transfer (LMT) atom optics are broadly defined as methods that
increase the momentum splitting between the interferometer arms beyond 2h̄k. In light-
pulse atom interferometry, several LMT techniques have been demonstrated. These include
using an additional sequence of π pulses [4,5,22–26] or Bloch oscillations in an optical
lattice [27–30] following the initial π/2 pulse to increase the momentum splitting, as well
as implementing individual π/2 pulses that transfer an increased number of photon mo-
mentum recoils via higher order Bragg diffraction [31]. For the sequential pulse method,
either Raman transitions [15], which change the internal hyperfine state, or Bragg tran-
sitions [4,5,18,19], which leave the internal state unchanged, can be used. Both methods
have their advantages and are worth considering for a given application. For instance,
Raman transitions are capable of efficiently transferring atom clouds with wider velocity
spreads along the laser beam axis [23], while Bragg transitions are immune to sources of
noise or drift arising from effects involving a changing internal state, such as ac Stark shifts
of the transition resonance [7,16,24,32]. Bloch oscillations also have the advantage of a
very high momentum transfer efficiency that is robust against intensity inhomogeneities
across the atom cloud [20–23]. Sequences of single-photon transitions on the 689 nm
inter-combination transition of strontium [33] represent an alternative approach that offers
wide velocity acceptance and reduced AC Stark shifts. This promising approach will be
studied in future work. We also note that another technique for large momentum transfer
is the so-called echo atom interferometry [34]. However, this type of interferometer is not
well-suited for rotation sensing since the interference signal results from many different
paths simultaneously. As such, this approach for large momentum transfer does not seem
to have direct relevance in enhancing the rotation measurement sensitivity of a PSI. An
evaluation of echo interferometry for rotation sensing would require further study.

Techniques such as Bragg diffraction and Bloch oscillation in optical lattices require
atoms with sub-recoil velocity spreads in the longitudinal direction, requiring either ve-
locity selection or increased cooling, which adversely affect the signal to noise ratio as
well as the repetition rate. As such, we focus here on the method of using additional
Raman pulses [15–17]. The protocol for realizing LMT using this method is illustrated in
Figure 7. Additional Raman pulses in alternating directions are added to the conventional
π/2− π− π/2 pulse sequence.
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The modeling of the motion of the center of mass of each atom was discussed earlier
in Section 3. Here, we describe the evolution of the internal states of each atom under
this Raman pulse sequence. The internal state is modeled as a three-level system: the
ground state |g〉, the excited state |e〉, and the intermediate state |i〉. The pulses induce
Raman transitions among these three states. The frequency and the wavenumber of the
first (second) Raman beam are denoted as ω1 (ω2) and k1 (k2). Due to conservation of
linear momentum, a pair of Raman beams couples the three states |g, k〉, |i, k + k1〉, and
|e, k + k1 − k2〉. The resulting Hamiltonian, in the basis spanned by these three states, can
be expressed as follows:

HRaman = }


}k2

2m + δ0
2

Ω1
2 0

Ω1
2

}(k+k1)
2

2m −∆0
Ω2
2

0 Ω2
2

}(k+k1−k2)
2

2m − δ0
2

 (14)

where δ0 = δg0 − δe0 and ∆0 =
(
δg0 + δe0

)
/2. Here, δg0 is defined as ω1 −

(
ωi −ωg

)
and

δe0 as ω2 − (ωi −ωe). With the adiabatic elimination [35], we obtain the effective two-level
system Hamiltonian, in the basis spanned by states |g, k〉 and |e, k + k1 − k2〉:

H =


}k2

2m + δ0
2 −

Ω2
1

2

[
}(k+k1)

2

m −2∆0

] −Ω1Ω2

2

[
}(k+k1)

2

m −2∆0

]
−Ω1Ω2

2

[
}(k+k1)

2

m −2∆0

] }(k+k1−k2)
2

2m − δ0
2 −

Ω2
2

2

[
}(k+k1)

2

m −2∆0

]

 (15)
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If we set δ0 = }(k1 − k2)
2/2m, Ω1 = Ω2 ≡ Ω0, and shift all energy levels by an

amount that makes the energy of state |g, k〉 vanish, we have:

H = }

 0 Ω2
0

4∆̃0
Ω2

0
4∆̃0

}k·(k1−k2)
m

 (16)

where ∆̃0 ≡
[
∆0 − }(k + k1)

2/2m
]
. From this Hamiltonian we see a detuning caused by

the Doppler shift given by }k · (k1 − k2)/m, as well as the effective Rabi frequency given
by Ω2

0/2∆̃0. In addition, the adiabatic elimination also gives us the effective decay rate [28]
between the states |g〉 and |e〉:

Γeff
g→e =

Γi→eΩ2
0

4∆̃2
0

; Γeff
e→g =

Γi→gΩ2
0

4∆̃2
0

(17)

The total decay rate for the coherence between states |g〉 and |e〉 is then given by:

Γeff = Γeff
g→e + Γeff

e→g =
ΓΩ2

0

4∆̃2
0

(18)

The D2 line decay rate from 52P3/2 to 52S1/2, expressed as Γ = Γi→g + Γi→e, is about
2π × (6 MHz) for 87Rb. Only the atoms that have not experienced spontaneous emission
keep their phase information. The fraction of atoms that have decohered by the end of
the interferometry process is given by exp(−Γeffτ), where τ is the total duration of all the
Raman pulses. With this model, we can simulate the signal for a PSI–LMT, while taking
into account the complexities caused by detuning. The effect of spontaneous emission is
considered later in a heuristic manner. In the model discussed in Section 3, we assumed all
k−components to be resonant, which is approximately valid if the effective Rabi frequency
is much larger than the Doppler shift. In order to account for more general conditions,
in our simulation we used different Hamiltonian operators for different k−components,
corresponding to Equation (16).

The computation process for determining the PSI signal can be summarized as follows.
As we illustrated before, each pure state in Equation (10) evolves independently. Therefore,
we can calculate the evolution of each pure state and add them up according to the initial
weight in the end. In each pure state, consider a single point in the k-space as an example
of the simulation. The state |g, k〉 will see the first π/2 pulse dictated by the Hamiltonian
in Equation (16), and become a superposition of a point (in the k-space) of the ground state
and a point (in the k-space) of the excited state. Then they evolve freely for time T. The
free evolution is dictated by the Hamiltonian in Equation (16) with Ω0 = 0. Then they see
the π pulse also dictated by Equation (16). The beams of the π-pulse are rotated by the
angle ΩT (where Ω is the rate of rotation). The π-pulse is imperfect due to the Doppler
shift detuning, resulting in a state that is a superposition of two points (in the k-space) of
the ground state and two points (in the k-space) of the excited state. After another free
evolution of T, they see the final π/2-pulse and become a superposition of four points (in
the k-space) of the ground states and four points (in the k-space) of the excited states. With
the final state in the k-space, we can calculate the state in the position space.

Using this approach, we simulated the signals for the case of atoms released from a
harmonic oscillator trap, as shown in Equation (10), for 87Rb, with the following parameters:
Ω0 = 2π×

(
10
√

10 MHz
)

, ∆0 = 2π× (500 MHz), TK = 6 µK, and a = 0.1 µm. Here, we
chose an unrealistically small size of the trap, in order to elucidate the behavior of a system
that is very close to an ideal point source. The simulation results for this case are shown in
Figure 8. The main difference from the result shown in Figure 2 is that the height of the
signal peak is shorter since the detuning resulting from kt (the difference in the momentum
in the z-direction between the two arms, as defined earlier in Section 2) was taken into
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account. There is also a little difference in the width of the signal peak. For the LMT case
shown in panel B, there are also some small peaks in addition to the main signal peak. This
is because the pulses are not ideal. For example, a pulse that is nominally designated to be
a π-pulse does not fully transform a ground state to an excited state, or vice versa, but will
leave some residual. The small peaks are the consequence of the interference involving the
residuals.
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Figure 8. Simulation results for the conventional PSI (Panel A: kt = keff) and the LMT–PSI (Panel B:
kt = 3keff) employing 87Rb with the parameters Ω0 = 2π×

(
10
√

10 MHz
)

, ∆0 = 2π× (500 MHz),

TK = 6 µK, and a = 0.1 µm, including the detuning effect. In each panel, (a) is the plot of
〈

Pg(r)
〉

in

the plane perpendicular to kt, (b) is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the plane perpendicular to kt, and (d) is the cross section at the dashed line of (c). The orientation
of the signal indicates the direction of the angular velocity.
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As can be seen from comparisons between the PSI and LMT–PSI results shown in
Figure 8, the LMT process produces a larger separation for the signal peaks in the Fourier
transform domain, thus making it more sensitive for measuring rotation. At the same time,
the amplitudes of the signal peaks are smaller, which in turn would represent a reduction
in the effective signal to noise ratio, and a corresponding reduction in sensitivity. The
actual improvement in sensitivity would be determined by both factors. In this context, we
consider first the fact that the degradation of the signal (both in terms of the reduction in
the amplitudes, and the appearance of additional peaks) can be countered by increasing the
effective Rabi frequency: Ω2

0/2∆0. As we mentioned before, the maximum heights for the
signal peaks occur when Ω2

0/2∆0 → ∞ . Figure 9 shows the comparison between signals
for different effective Rabi frequencies, with kt = 3keff. Panel A in Figure 9 corresponds
to the case where Ω0 = 2π×

(
10
√

10 MHz
)

and ∆0 = 2π× (500 MHz). Panel B (which
is the same as Panel A of Figure 8) corresponds to the case where Ω0 = 2π× (100 MHz)
and ∆0 = 2π× (500 MHz). As can be seen, the amplitudes of the signal peaks increase for
the larger value of the effective Rabi frequency, and the additional peaks almost disappear
completely. Figure 10 shows a signal for kt = 7keff with Ω0 = 2π × (100 MHz) and
∆0 = 2π× (500 MHz). We can see in this case that the signal is still very close to the
ideal signal that does not take into account the effect of detuning. Simulations with larger
kt require extremely large amounts of computational resources because we used a fully
quantum model. Attempts will be made in the near future to extend the simulation to
much larger values of kt. In what follows, we present a systematic analysis for estimating
quantitatively the expected net enhancement in sensitivity as a function of the effective
Rabi frequency and the value of kt, while taking into account the effect of spontaneous
emission heuristically.

Before proceeding with this analysis, we note for clarity that the results presented in
Figures 8–10 have been computed with the augmented quantum model. However, if the
semi-classical model were used instead, the results would be very similar, even when the
Doppler detuning is taken into account, with the difference being very small of the order of
what is shown in Figure 6d. Furthermore, as noted above, carrying out the analysis with the
augmented quantum model for a significant value of N requires enormous computational
resources. Given that the difference between the results produced by the semi-classical
analysis and the augmented quantum model is very small, undertaking such an analysis
was not deemed critically important at this point. Instead, in order to estimate the degree
of enhancement achievable using LMT for increasing values of N, in what follows we make
a simplifying assumption that eliminates the distinction between the augmented quantum
model and the semi-classical model. Specifically, in the estimation of the contrast of the
fringes (equivalently, the height of the signal peak in the Fourier transform domain) we
ignore the momentum distribution of the atoms and assume that all atoms see the same
detuning. Therefore, the effect of the Doppler shift detuning will produce only an overall
reduction in the signal peak. Consequently, the quantized model for the motion of the
center of mass of the atoms becomes irrelevant. The spontaneous emission also only results
in an overall reduction in the signal peak, and thus does not depend on the quantized
model for the motion of the center of mass of the atoms. As such, the rest of the results that
follow in this section are based on the semi-classical model.
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Figure 9. Comparison between the signals with low and high effective Rabi frequencies, with kt =

3keff, TK = 6 µK, and a = 0.1 µm. Panel A corresponds to the case where Ω0 = 2π×
(

10
√

10 MHz
)

and ∆0 = 2π× (500 MHz). Panel B corresponds to the case where Ω0 = 2π× (100 MHz) and
∆0 = 2π× (500 MHz). In each panel, (a) is the plot of

〈
Pg(r)

〉
in the plane perpendicular to kt, (b)

is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the plane perpendicular to

kt, and (d) is the cross section at the dashed line of (c). With the higher effective Rabi frequency, the
contrast of the signal is improved significantly. Note that the plot in Panel A here is identical to the
plot in Panel B of Figure 8.
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Figure 10. The signal for kt = 7keff with Ω0 = 2π× (100 MHz) and ∆0 = 2π× (500 MHz). This is
to be compared with graph (d) in Panel B of Figure 9, with the only difference being in the value of
kt. In this case, the signal is still very close to the ideal one that does not take into account the effect
of detuning, meaning that such parameters work fine for a momentum transfer of 7keff. This is the
largest momentum transfer we have rigorously simulated so far.

The value of h, the height of the signal peaks in the Fourier transform domain, defined
earlier in Section 2, is determined primarily by the transition efficiency of each π− pulse
and the effective spontaneous emission. To simplify the analysis, as noted above, we
ignore the dependence of the effective Rabi frequency on the momentum of the atoms.
Therefore, we define the constant effective Rabi frequency as Ωeff ≡ Ω2

0/2∆0. We define
the propagator of the quantum state of the atom due to a Raman pulse, U, by the expression
|ψ(t0 + t)〉 = U(t)|ψ(t0)〉. This propagator including the effect of detuning caused by the
Doppler shift can be expressed as:

U(t) =

[
cos Ω′t

2 − i δ
Ω′ sin Ω′t

2 −i Ωeff
Ω′ sin Ω′t

2
−i Ωeff

Ω′ sin Ω′t
2 cos Ω′t

2 − i δ
Ω′ sin Ω′t

2

]
(19)

where Ω′ ≡
√

Ω2
eff + δ2 and δ is the detuning caused by the Doppler shift. In principle,

even the atoms following the same trajectories will have a thermal distribution of momenta.
However, in the LMT case with N much larger than unity, the thermal momentum is very
small compared to kt. With TK = 6 µK, the typical thermal momentum,

√
mkBTK, is only

~2}keff. Therefore, we ignore the thermal momentum distribution of the atoms, which
means that atoms following the same trajectories experience the same detuning. Generally,
it is difficult to handle this propagator analytically. However, in the limit that δ� Ωeff, we
can make approximations to Equation (19) and make it more manageable. The transition
efficiency of a π-pulse derived from Equation (19) is:

ηk =
(

Ωeff
Ω′ sin Ω′t

2

)2
= 1

1+δ2
k /Ω2

0
sin2 µ

√
1+δ2

k /Ω2
eff

2

≡ 1
1+βk

sin2 µ
√

1+βk
2 = 1

1+βk

(20)

where µ ≡ Ωefft, δk is the Doppler shift inducing detuning for an atom with momentum k,
and βk ≡ (δk/Ωeff)

2 = (}keffk/mΩeff)
2. In the last step of Equation (20), we assumed that

we could make µ different for each Raman pulse, such that for all pulses µk = π/
√

1 + βk.
When Ωeff = 2π× (10 MHz), the value of β100keff

is only ~0.1. Therefore, it is reasonable to
consider βk a small quantity. Only considering the effect of the imperfection of the π-pulses,
the height of the signal peak for kt = Nkeff is reduced by a factor of the multiplication of
the transition efficiency of all the π-pulses times the spontaneous decay term, that is:
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hNkeff
= 1

4

(
ηkeff

η2keff
· · · η(N−1)keff/2

)4
exp(−Γeffτ)

= 1

4
[(

1+βkeff

)(
1+β2keff

)
···
(

1+β(N−1)keff/2

)]4

exp

(
−Γeff

π
Ωeff

4

(
1√

1+βkeff
+ 1√

1+β2keff
+ · · · 1√

1+β(N−1)keff/2

)) (21)

Then the logarithm of the height is:

ln hNkeff
= −4

(N−1)/2

∑
n=1

(
ln
(
1 + βnkeff

)
+

πΓeff

Ωeff
√

1 + βnkeff

)
− 2 ln 2 (22)

Keeping only the leading term of β, we have:

ln hNkeff
≈ −4

(
1− πΓeff

2Ωeff

)( }k2
eff

mΩeff

)2(N−1)/2
∑

n=1
n2 − 2(N−1)πΓeff

Ωeff
− 2 ln 2

= − 1
6 N
(

N2 − 1
)(

1− πΓeff
2Ωeff

)( }k2
eff

mΩeff

)2
− 2(N−1)πΓeff

Ωeff
− 2 ln 2

≈ − 1
6 N3

(
1− πΓeff

2Ωeff

)( }k2
eff

mΩeff

)2
− 2πNΓeff

Ωeff
− 2 ln 2

≈ − 1
6 N3

(
}k2

eff
mΩeff

)2
− 2πNΓeff

Ωeff
− 2 ln 2

(23)

The last step in Equation (23) is valid because normally, as long as we have a reasonably
large ∆0, the value of πΓeff/Ωeff is very small compared to 1. For example, if Ω0 =
2π × (100 MHz) and ∆0 = 2π × (500 MHz), we have πΓeff/Ωeff = 0.006. Therefore,
(1− πΓeff/2Ωeff) ≈ 1. With a reasonably large ∆0, we also note that Γeff = ΓΩ2

0/4∆̃2
0 ≈

ΓΩ2
0/4∆2

0 = ΓΩeff/2∆0. Here, we do not consider the effect of the finite initial size of the

atomic cloud, so that ε ≡ δΩNkeff
/δΩkeff

= N
√

hNkeff
/hkeff

. In this expression, hkeff
can be

considered the ideal height 1⁄4, and thus ln hkeff
= (−2 ln 2). Substituting the expressions of

hkeff
and hNkeff

into the expression of the improvement factor, we can calculate the natural
logarithm of the improvement factor:

ln ε = ln N +
1
2

ln
hNkeff

hkeff

= ln N − 1
3

N3

(
}k2

eff∆0

mΩ2
0

)2

− πNΓ

2∆0
(24)

The optimal value of ∆0 for maximizing ln ε is:

∆
opt
0 =

(
3πΓ

4

)1/3
(

mΩ2
0

N}k2
eff

)2/3

(25)

The natural logarithm of the improvement factor for this ∆0 is:

ln ε = ln N − N5/3

(
3πΓ}k2

eff
4mΩ2

0

)2/3

(26)

We see that the maximum value of ε is given by:

εmax = e−3/5
(

3
125

)1/5
(

4mΩ2
0

πΓ}k2
eff

)2/5

= 0.56
[

Ω0

2π× (1 MHz)

]4/5
(27)



Atoms 2021, 9, 51 20 of 25

This value of ε occurs for an optimal value of N, given by:

Nopt =

(
3

125

)1/5
(

4mΩ2
0

πΓ}k2
eff

)2/5

= 1.0
[

Ω0

2π× (1 MHz)

]4/5
(28)

We can see from Equations (27) and (28) that both εmax and Nopt are proportional
to Ω4/5

0 . Figure 11 shows how ε varies with N for Ω0 = 2π × (200 MHz) (red) and
Ω0 = 2π× (100 MHz) (blue) when only the effect of the imperfection of the π-pulses is
considered. We see that εmax = 39 for Nopt = 69 with Ω0 = 2π× (200 MHz). With this
Rabi frequency, when N = 69, the optimal ∆0 is 2π × (1.7 GHz), according to Equation (25).
It is also shown in Figure 11 that Ω0 can significantly affect the maximum improvement
LMT can achieve.
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Figure 11. Improvement factor ε as a function of N = kt/keff, with the effective Rabi frequency
Ω0 = 2π× (200 MHz) (red) and Ω0 = 2π× (100 MHz) (blue) when only considering the effect of the
imperfection of the π-pulses. For both curves, the improvement factor ε goes up first as N increases,
then it reaches a maximum value, and finally goes down. The maximum improvement is also
enhanced as Ω0 increases. ε reaches a maximum value of 39 for N = 69 with Ω0 = 2π× (200 MHz).

In the analysis above, we only considered the effect of imperfect π-pulses on the
signal. Next, we incorporate the effect of the finite initial size discussed in Section 2 into the
calculation of the signal. Adding the contribution of the finite initial size to the reduction
in the height of the signal peak shown in Equation (4), Equation (23) is modified to be:

ln hNkeff
≈ −1

6
N3

(
}k2

eff
mΩeff

)2

− 2πNΓeff
Ωeff

− 1
2
(NkeffΩTσ0)

2

[
1−

(
σ0

σf

)2
]
− 2 ln 2 (29)

and Equation (24) is modified to be:

ln ε = ln N + 1
2 ln

hNkeff
hkeff

= ln N − 1
3 N3

(
}k2

eff∆0

mΩ2
0

)2
− πNΓ

2∆0
− 1

4
(

N2 − 1
)
(keffΩTσ0)

2
[

1−
(

σ0
σf

)2
]

≈ ln N − 1
3 N3

(
}k2

eff∆0

mΩ2
0

)2
− πNΓ

2∆0
− 1

4 (NkeffΩTσ0)
2
[

1−
(

σ0
σf

)2
] (30)
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Here, σ0

(
σf

)
is the initial (final) size of the atomic cloud, as defined earlier in Section 2.

The optimal detuning will not be affected by the initial size of the atomic cloud because the
term contributed by the finite initial size does not depend on the detuning ∆0. Therefore,
with the optimal detuning, we have:

ln ε = ln N − N5/3

(
3πΓ}k2

eff
4mΩ2

0

)2/3

− 1
4
(NkeffΩTσ0)

2

[
1−

(
σ0

σf

)2
]

(31)

Figure 12 shows the relationship between ε and N given by Equation (31), with
σf = 1 cm, TK = 6 µK, Ω0 = 2π× (200 MHz). The black dotted curve shows the case
where σ0 = 0, which is identical to the red curve in Figure 12. The red curves are the
plots for σ0 = 0.1 mm, while the blue curves are for σ0 = 0.5 mm. The solid (dashed)
curves correspond to an angular velocity of 1 (2) µHz. We can see that if σ0 = 0.1 mm, the
correction to the signal due to the finite initial size is very small. In this case the conclusion
derived above that εmax = 39 for Nopt = 69 is still valid. We can also see that the correction
to the signal due to the finite initial size decreases as the angular velocity we want to
measure decreases. Therefore, LMT is more advantageous for measuring smaller rotations.
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(dashed) curves correspond to an angular velocity of 1(2) µHz. We can see that the larger the initial
size is, the less LMT can improve the PSI.

To recap, both Figures 11 and 12 are plots of the improvement factor ε versus N ≡ kt/keff.
Figure 11 shows the cases where we only considered the effect of Doppler shift detuning
and spontaneous decay. Figure 12 shows the cases where we additionally took into account
the effect of the finite initial size of the atomic cloud. In Figure 11, the blue curve shows the
case where the one-photon Rabi frequency was 100 MHz and the red curve was 200 MHz.
We can see that a higher one-photon Rabi frequency will enable us to improve the PSI more
with LMT. We used a one-photon Rabi frequency of 200 MHz for all curves in Figure 12. In
this figure, the red curves (both solid and dashed) are plots for the initial size of the atomic
cloud σ0 = 0.1 mm, and the blue curves for σ0 = 0.5 mm. The solid curves (both red and
blue) are for the angular velocity of 1 µHz, and the dashed curves are for 2 µHz. We can
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see that both a smaller initial size and a smaller angular velocity will enable us to improve
the PSI more with LMT. With Ω0 = 2π× 200 MHz, σ0 = 0.1 mm, and an angular velocity
of 1 µHz, the effect of the finite initial size of the atomic cloud is not obvious and thus the
result becomes very similar to the red curve in Figure 11 (reproduced as the black dotted
curve in Figure 12).

It can be seen from the discussion above that the value of Ω0 is very important for
the performance of the LMT-PSI. Therefore, we discuss here the relationship between
the experimental parameters and Ω0. For 87Rb, we assumed the ground state |g〉 to be{2S1/2, F = 1, mF = 0

}
, and the excited state |e〉 to be

{2S1/2, F = 2, mF = 0
}

. In most
implementations of Raman-pulse-based atom interferometers, the beams are circularly
(σ) polarized [36]. If the beams are σ+ polarized, the intermediate state |i〉 consists of
two states: |F = 1, mF = 1〉 and |F = 2, mF = 1〉 of the 2P3/2 manifold. The corresponding
transition matrix elements [37] are shown in Figure 13. For the cycling transition from
|F = 2, mF = 2〉 to |F = 3, mF = 3〉, an intensity of 3.34 mW/cm2 yields Ω0 = Γ. For
a given intensity on each leg of the Raman transition, we can use this information to
determine the effective Rabi frequency for each of the two Raman transitions, treated
separately, and the net effective Rabi frequency would be the sum of these two effective
Rabi frequencies. If we assume that each leg has the same laser intensity and consider
the fact that the energy separation between the two upper levels (~157 MHz) is negligible
compared to the detuning, then it is easy to see that the effective Rabi frequency for the
lower Raman transition is weaker than that for the upper Raman transition by a factor of(√

1/8×
√

1/8
)
/
(√

5/24×
√

1/120
)
= 3. If we consider the upper Raman transition only,

the intensity needed for the condition of Ω0 = 2π× (100 MHz) ≈ 16.7Γ is ~3.7 W/cm2.
When both Raman transitions are taken into account, an intensity lower by a factor of
3/4 (i.e., ~2.8 W/cm2) would produce the effective Rabi frequency corresponding to
Ω0 = 16.7Γ in our model presented above [38]. Such an intensity can be achieved, for
example, by using a tapered amplifier on each leg of the Raman transition.
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There is another technique that can potentially decrease the effect of the detuning. At
the beginning, when the momentum difference between the two arms is small, both arms
are addressed with the same Raman beams. When the momentum difference between the
two arms become large enough, we can address them with different Raman beams so that
both arms are resonant to its own Raman beams and far detuned from the Raman beams
for the other arm. This technique works well for very cold atoms. However, for an atom at
a temperature of 6 µK, the thermal momentum is about 2}keff. It is not obvious whether
this thermal momentum is sufficiently small in comparison to the total momentum transfer
for this technique to improve the performance of the PSI–LMT significantly. This issue will
be investigated in the future.
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5. Conclusions

In a point source interferometer (PSI), atoms are split and recombined by applying a
temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving
approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that
automatically filters out the signal from accelerations, thus making it an attractive system
for practical rotation sensing. The phase shift arising from rotations is proportional to the
momentum transferred to each atom from the Raman pulses. Here, we investigated the
degree of enhancement in sensitivity that could in principle be achieved by augmenting the
PSI with large momentum transfer (LMT) employing a sequence of many Raman pulses
with alternating directions. We considered a semi-classical model as well as an augmented
quantum model under which the center-of-mass motion of atoms is treated quantum
mechanically and showed that the results from these models are in close agreement with
one another in the thermal limit, which applies to the situations we consider. After
establishing this fact, we adopted the use of the semi-classical model for further analysis,
since this allowed the derivation of analytical results regarding how the enhancement
in sensitivity depends on the degree of large momentum transfer and the intensities of
the Raman pulses, taking into account the effects of Doppler detuning and spontaneous
emission. We have shown how increasing Doppler shifts leads to imperfections, thereby
limiting the visibility of the signal fringes. We have also shown that this effect can be
suppressed by increasing the effective Rabi frequencies of the Raman pulses. For a given
value of the effective Rabi frequency, we showed that there is an optimum value for the
number of pulses employed, beyond which the net enhancement in sensitivity begins
to decrease. With LMT, the total duration of the pulses can be much longer than the
conventional case, making the effect of spontaneous emission highly relevant. For a given
one-photon Rabi frequency, a larger detuning decreases the effective Rabi frequency, but
reduces spontaneous emission. Therefore, there exists an optimal detuning dependent
on the number of pulses applied. For a given value of the one-photon Rabi frequency,
employing the optimal detuning, we showed that there is an optimum value for the number
of pulses used, beyond which the net enhancement in sensitivity begins to decrease. For
a one-photon Rabi frequency of 200 MHz, for example, the peak value of the factor of
enhancement in sensitivity is ~40, for a momentum transfer that is ~70 times as large as
that for a conventional PSI. In addition to what we have studied here, other effects such as
Rabi frequency inhomogeneities, AC Stark shifts, or laser wavefront imperfections may
limit the sensitivity gained from implementing LMT. The impact of these effects on PSI
will be modeled in future work. It is anticipated that composite pulses [17] or pulses
employing adiabatic rapid passage [16], or optimal quantum control [39], which makes
the transfer efficiency less sensitive to Doppler and AC-Stark-shift induced detunings
and Rabi frequency inhomogeneities, would further increase the peak enhancement in
sensitivity. Moreover, the implementation of PSI in combination with spatially resolved
phase detection offers the potential to characterize and mitigate laser-wavefront-induced
phase errors [1,40]. These and other mitigation strategies will be explored in future work.
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