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Abstract: The hybrid opto-electronic correlator (HOC) uses a combination of optics and
electronics to perform target recognition. Achieving a stable output from this architecture has
previously presented a significant challenge due to a high sensitivity to optical phase variations,
limiting the real-world feasibility of the device. Here we present a modification to the architecture
that essentially eliminates the dependence on optical phases, and demonstrate verification of the
proposed approach. Experimental results are shown to agree with the theory and simulations, for
scale, rotation and shift invariant image recognition. This approach represents a major innovation
in making the HOC viable for real-world applications.
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1. Introduction

Ultra-fast image recognition is of significant interest in many fields. Recent advances in machine
learning and other implementations of artificial intelligence promise to increase the reliability
and precision of image detection schemes, but these typically require powerful processing stages
that are still limited in speed. An improved version of the so-called YOLO (you only look once)
algorithm, for example, is currently recognized as the fastest such computational technique,
yielding inference times close to 12 ms [1]. This speed may be sufficient for some cases, but often
falls short for real-time processing or for applications with large datasets consisting of millions
of images.

Optical image processing techniques have received much attention in recent years as an
alternative to these electronic methods [2–6] thanks in large part to the inherent speed-of-light
advantage. One branch of optical image processing has focused on the use of Fourier optics and
holography to produce the convolution or cross-correlation of images [7–15]. In these schemes,
the Fourier transforms (FT) of the target images are obtained through lenses, multiplied with each
other, and finally FT’d again to obtain the final signals. Unfortunately, the multiplication process
is not trivial when dealing with optical signals, and various architectures have been proposed
with distinct approaches [6,7,16,17]. As an example, the traditional Vander-Lugt correlator uses
a hologram to store the amplitude and phase information of the FT of a reference image, which is
then used as a filter to multiply the FT of a query image [17]. While this setup has the advantage
of simplicity, it is not useful in practice because of the fact that an individual filter has to be
made for each reference image. As an alternative, the joint-transform correlator performs the
writing and reading of the holograms simultaneously in a single-step process, allowing for more
dynamic operation of the device [16]. However, in this case the nonlinear holographic material
that is required tends to be quite fragile and difficult to operate [18], again severely limiting the
maximum real-world operational speed.
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We previously proposed and demonstrated a correlator architecture [13,14,19] that replaces
the analog holographic approach with digital techniques in order to perform the multiplication
step. We have estimated that the HOC architecture that incorporates a holographic memory disc
(HMD) for rapid retrieval of reference images could reach a maximum real-world operating speed
on the order of a few microseconds with current technologies [15]. We have also shown that by
incorporating the polar Mellin transform (PMT), the HOC can be operated to produce shift, scale,
and rotation invariant (SSRI) correlations [20], requiring only an additional opto-electronic PMT
pre-processor (OPP) stage [21].

While the HOC has been successfully demonstrated in different modalities, it has thus far
required highly stable optical phases along two critical beam paths. This necessitated the use
of an actively isolated optical table, an enclosure that minimizes air currents, and an optical
phase scanning stage. For optimal operation of the HOC, it was necessary to maximize the
correlation signal by scanning the relevant phase difference. If it is possible to keep the optical
pathlengths extremely stable during the whole search process, this approach would in principle
work. However, implementing a system with the requisite degree of stability is extremely difficult
in practice. In this paper, we describe and demonstrate a technique that enables the HOC
to operate optimally without requiring such phase stability. As such, this represents a major
innovation in making the HOC viable for real-world applications.

The rest of the paper is organized as follows. Section 2 presents a brief review of the HOC
architecture. The off-axis technique that reduces the sensitivity to optical phase instability is
presented in Section 3 along with simulation results. Details of the experimental implementation
are given in Section 4. Results and a discussion on the implications of the data follow in Section
5, and Section 6 concludes with a summary and outlook.

2. HOC architecture

2.1. Design

The optical portion of the HOC consists of an input stage and an output stage, as shown in Fig. 1.
The input stage is itself composed of three arms: the phase scanning (PS) arm, the query image
arm, and the reference image arm. The query arm projects an image, Hq, into the optical domain
using an SLM (spatial light modulator), while the reference arm uses a volume HMD for the
reference image, Hr. In principle, both arms could use SLMs, but even state of the art devices
are limited to frame times on the order of milliseconds. In contrast, the speed of an HMD is
only limited by how quickly the reading angle or physical position can be changed, which can be
accomplished in microsecond speeds using acousto-optic modulators and high-speed rotation
stages, allowing us to scan many reference images during a single query frame of the SLM. With
the exception of the projection method, both image arms function identically: a lens is placed one
focal distance away from the SLM or HMD, projecting the FT, which we label Mr,q=FT{Hr,q},
at the opposite focal plane. A beam splitter (BS) reflects part of the Mr,q beam towards an FPA
(focal plane array), denoted as FPAB

r,q, at the Fourier plane, thus detecting the intensity of the
FT, which we label Br,q. The transmitted portion of the Mr,q beam continues towards another
BS that is used to combine the FT with an auxiliary plane wave (APW), Cr,q, finally reaching
FPAA

r,q, which is also placed at the Fourier plane, thus detecting the interference between the FT
and the APW, which we label Ar,q. Finally, a third BS is used in conjunction with FPAC

r,q to
capture the intensity of the APW itself. These signals can be electronically processed to obtain
the product of the FTs, as described in Section 2.2 below. In all three arms of the input stage of
the HOC, half-wave plates and polarizers are used to control the relative intensities of the beams
while maintaining a shared polarization axis.

The output stage consists of SLMout, which is placed one focal distance away from a lens, and
FPAout, which is placed at the opposite focal plane of the lens. The SLM projects the result of the
electronic processing, and its FT is captured by the FPA. Because the electronic signal contains
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Fig. 1. Optical section of the HOC architecture using an SLM for query images and an
HMD for reference images. Not shown: electronic processing stages. The input and output
stages are bordered by a blue dashed line. (1, yellow): Phase scanning arm. (2, orange):
Query image arm. (3, blue): Reference image arm.

the multiplication of the FTs of the original images, the FPA measurement effectively contains
the two-dimensional convolution and correlation signals.

This architecture is inherently shift invariant but requires additional processing in order to
achieve rotation and scale invariance. To this end, the input images are pre-processed using the
PMT to generate a signature that is rotation and scale invariant. The HOC then operates on these
images, thus enabling SSRI correlation. More details on this process can be found in [14,20].

The architecture of the HOC is designed specifically for the task of recognizing objects. As
such, it is expected that all images would be converted from the digital domain to the optical
domain prior to the use of the HOC. This affords us the flexibility of using the same linear
polarization at every stage. However, for some applications, such as in polarization-based optical
image encryption [22], it may be necessary to deal with images that have spatially varying
polarizations. In order to implement such protocols using the hybrid opto-electronic approach,
the system architecture as well as the processing steps have to be modified significantly, with the
details depending on the specific task at hand. An analysis of such modifications is beyond the
scope of this paper.

2.2. Detected signals and output

In total, the HOC detects three signals for each arm:

Ar,q(ρ⃗) = |Mr,q(ρ⃗) + Cr,q(ρ⃗)|
2 Br,q(ρ⃗) = |Mr,q(ρ⃗)|

2
|Cr,q(ρ⃗)|

2 (1)

where ρ⃗=(x,y) is the spatial plane at the corresponding FPA. For brevity, the functional dependence
on ρ⃗ will not be explicitly indicated in the remaining equations unless needed. To get rid of the
unwarranted terms in the Ar,q signals, we compute the following:

Sr,q = Ar,q − Br,q − |Cr,q |
2 = Mr,qC∗

r,q+M∗
r,qCr,q (2)
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This can be performed rapidly on a pixel-by-pixel basis on an FPGA. Additionally, the same
FPGA can multiply the Sr and Sq signals to get an output that contains the products of the FTs:

S = Sr • Sq = α
∗MrMq + αM∗

r M∗
q+β

∗MrM∗
q+βM

∗
r Mq (3)

where we have defined α=CrCq and β=CrC*q. This signal is projected back into the optical
domain by SLMout and passed through a lens to obtain its FT:

Sf = FT{S} ≈ α∗FT{MrMq} + α FT{M∗
r M∗

q} + β
∗FT{MrM∗

q} + β FT{M∗
r Mq}

= α∗T1 + α T2 + β
∗T3 + β T4

T1 = Hr(ρ⃗) ⊗ Hq(ρ⃗)

T2 = Hr(−ρ⃗) ⊗ Hq(−ρ⃗) = T1(−ρ⃗)

T3 = Hq(ρ⃗) ⊙ Hr(ρ⃗)

T4 = Hr(ρ⃗) ⊙ Hq(ρ⃗)

(4)

where ⊗ and ⊙ represent the 2D convolution and cross-correlation operations, respectively. Here
we have assumed that the spatial profile of α and β, and thus the spatial profile of Cr and Cq, are
constant, which is the case for perfect plane waves.

The final Sf signal is obtained optically and captured by FPAout, and so only the intensity of
the signal can be measured. Therefore, the final output signal is given by:

|Sf |
2 = |α |2 |T1 |

2 + |α |2 |T2 |
2 + |β |2 |T3 |

2 + |β |2 |T4 |
2 + (α2)∗T1T∗

2+α
2T∗

1T2

+ α∗βT1T∗
3+αβ

∗T∗
1T3 + α

∗β∗T1T∗
4+αβT

∗
1T4 + αβT2T∗

3+α
∗β∗T∗

2T3

+ αβ∗T2T∗
4+α

∗βT∗
2T4 + (β

2)∗T3T∗
4+β

2T∗
3T4

(5)

We note that the T terms are the convolution and cross-correlation of real images, and so must
themselves be real-valued. Therefore, it follows that:

|Sf |
2 = |α |2T2

1 + |α |2T2
2 + |β |2T2

3 + |β |2T2
4 + 2T1T2Re{α2} + 2T3T4Re{β2}

+ 2Re{α∗β}(T1T3 + T2T4) + 2Re{αβ}(T1T4 + 2T2T3)
(6)

It is important to observe that the T2 terms only depend on the magnitude of α and β, and
so are unaffected by the optical phases of Cr and Cq. In contrast, the terms that contain TnTm,
where n and m are different indices between 1-4, directly depend on the phase of α and β and so
are affected by the optical phases of Cr and Cq This phase dependence complicates the operation
of the HOC, as it is very difficult to stabilize optical phases, especially in free space.

3. Off-axis correlation technique

As noted earlier, we have developed an off-axis correlation technique that makes it possible to
detect selectively only the terms that are (a) relevant for measuring the cross-correlation signals
and (b) independent of the relative phase between the two plane waves. To explain how this
process works, we start by considering the domain of the convolution and correlation signals in
the spatial plane for different positions of input images. For conciseness, we will only explicitly
derive the case of the T1 (convolution) and T4 (correlation) terms. The results for the T2 and T3
terms were obtained through the same calculations and will be presented in the end.
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Consider two signals, Hr and Hq, that are centered about (0,0) such that:

Hr,cen(x, y) =
⎧⎪⎪⎨⎪⎪⎩

imager (−xrw<x<xrw, −yrw<y<yrw)

0 otherwise

Hq,cen(x, y) =
⎧⎪⎪⎨⎪⎪⎩

imageq (−xqw<x<xqw, −yqw<y<yqw)

0 otherwise

(7)

where xrw, yrw, xqw, and yqw are half of the width and height of the images, respectively. Here the
images are assumed to have a finite domain, as is the case with real images. The results of the
convolution for this centered case can be written as:

T1,cen(x, y) = Hr,cen(x, y) ⊗ Hq,cen(x, y)
= FT−1{Mr,cen • Mq,cen}

(8)

where Mr,cen and Mq,cen are the FTs of Hr,cen and Hq,cen, respectively. Consider now the case
where the reference image is shifted by xrs and yrs. Here, the domain of the image will also be
shifted:

Hr,s =

⎧⎪⎪⎨⎪⎪⎩
imager (−xrw + xrs<x<xrw + xrs, −yrw + yrs<y<yrw + yrs)

0 otherwise

= Hr,cen(x − xrs, y − yrs)

(9)

In this scenario, we can find the relationship between the new shifted convolution term and the
previous centered convolution term.

T1,rs(x, y) = Hr,cen(x − xrs, y − yrs) ⊗ Hq,cen(x, y)
= FT−1{exp(−i ω̂x xrs) • exp(−i ω̂y yrs) • Mr,cen • Mq,cen}

= T1,cen(x − xrs, y − yrs)

(10)

Additionally, if the Hq image is also shifted by xqs and yqs, then the T1 term becomes:

T1,rs,qs(x, y) = FT−1{exp(−i ω̂x (xrs + xqs)) • exp(−i ω̂y (yrs + yqs)) • Mr,cen • Mq,cen}

= T1,cen(x − xrs − xqs, y − yrs − yqs)
(11)

Here, it is clear that a shift in either Hr or Hq will equally result in a shift in the T1 convolution
term. Repeating the derivation for T2, we obtain a similar result, but now the resulting output
shift will be in the opposite direction compared to the same for Hr or Hq.

T2,rs,qs(x, y) = T2,cen(x + xrs + xqs, y + yrs + yqs) (12)

Following the same steps for the T4 term, we find that, unlike the convolution terms, the
directionality of the output shift now depends on which image is being shifted. This is due to the
presence of a complex conjugate in the Fourier-domain expression for the correlation.

T4,cen(x, y) = Hr,cen(x, y) ⊙ Hq,cen(x, y)
= FT−1{M∗

r,cen•Mq,cen}
(13)

In this form, it is clear to see that in the case of shifted input images, the direction of the shift
in the conjugated term will be reversed in the output.

T4,rs,qs(x, y) = FT−1{exp(−i ω̂x (−xrs + xqs)) • exp(−i ω̂y (−yrs + yqs)) • M∗
r,cen•Mq,cen}

= T4,cen(x + xrs − xqs, y + yrs − yqs)
(14)
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Here, a shift in Hr will move the correlation in the opposite direction compared to the same for
a shift in Hq. Finally, the shifted T3 term can be written as:

T3,rs,qs(x, y) = T3,cen(x − xrs + xqs, y − yrs + yqs) (15)

From Eqs. (11), (12), (14), and (15) it is evident that each T term moves in a different direction
in response to both images shifting in x and y. We will denote this as the separation property of
the T terms.

While each T term responds differently to a shift in the input images, it may not be evident as
to what domain the terms will have in the output plane. To find this, we can write the integral
form of the T1 convolution term when both images are centered about (0,0):

T1,cen(x, y) =
∞∫

−∞

∞∫
−∞

Hr,cen(x − x̃, y − ỹ) • Hq,cen(x̃, ỹ) dx̃ dỹ (16)

From this expression, and because Hr,cen and Hq,cen are zero outside of ((-xrw, xrw),(-yrw, yrw))
and ((-xqw, xqw),(-yqw, yqw)), respectively, we can conclude that T1,cen will always be zero outside
of the extended range ((-xtw, xtw),(-ytw, ytw)), where xtw = xrw + xqw and ytw = yrw + yqw. This will
also be the case for T2,cen, T3,cen, and T4,cen. Furthermore, when the images are shifted, this range
will shift in the same direction as the corresponding T term. These properties are summarized in
Table 1. By setting xrs = -xqs = xtw and yrs = -yqs = ytw, the distribution of the T terms is simplified
greatly, as shown in Table 2. This is equivalent to shifting both images in opposite directions by
the sum of half their sizes in each axis.

Figure 2 shows a diagram of the regions of the T terms shown in Table 2. Here, the T1 and T2
convolution terms are centered about zero, while the T3 and T4 correlation terms are separated by
a fixed distance and are only non-zero within well-defined regions that do not overlap any other
term. Because of this, the product of a correlation term with any other term will always yield a
null value. Furthermore, as described in Section 2.2 above, these terms and their products appear
in Eq. (6), which we may now simplify for the shifted case by taking into account the lack of
overlap from the correlation terms:

|Sf |
2

shifted = |α |2T2
1,rs,qs + |α |2T2

2,rs,qs + |β |2T2
3,rs,qs + |β|2T2

4,rs,qs + 2T1,rs,qsT2,rs,qsRe{α2} (17)

Finally, we are not interested in the convolution terms or their products, which are centered
about zero. As such, we may implement an oval DC blocking filter in front of FPAout with a
radius of xtw and ytw in each respective axis. This filter will block the convolution terms altogether,
allowing us to simplify Eq. (17) further:

|Sf |
2
shifted, DC blocked = |β |2T2

3,rs,qs + |β |2T2
4,rs,qs (18)

In this final expression, it is clear that the output of the HOC under this off-axis technique will
only contain the two complementary cross-correlation terms that are themselves independent of
the complex phase of the α and β terms, which contain the optical phase information of the Cr
and Cq APWs.

Figures 3 and 4 show simulation results using Eq. (6) with unshifted (on-axis) and shifted
(off-axis) inputs, respectively, as well as the dependence on the optical phase of the APWs for both
cases. In Fig. 3(B), the cross-correlation and convolution terms overlap in the output plane, and
so cannot be distinguished. Additionally, the total power of the output signal depends sinusoidally
on the phase difference between the two APWs, as shown in Fig. 3 (C). In contrast, Fig. 4(B)
shows how the shift in the images results in a broad separation of the cross-correlation and
convolution terms, allowing the former to be independently measured. Figure 4(C) confirms that
the power of the isolated correlation terms is independent of the phases of the APWs, essentially
eliminating the need for high phase stability and additional phase scanning. If the convolution
terms in the red area are blocked, these results are equivalent to those obtained using Eq. (18).
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Fig. 2. Distribution of the convolution and cross-correlation terms after shifting the input
images by xrs = -xqs = xtw and yrs = -yqs = ytw, as shown in Table 2. Red: Area where the T1
and T2 convolution terms are non-zero. Blue: Area where the T3 and T4 cross-correlation
terms are non-zero.

Table 1. Location and domain of each T term for shifted input
images.

Term Center Coordinate Non-zero Range

T1,rs,qs (+xrs + xqs, +yrs + yqs)
x |(−xtw + xrs + xqs, xtw + xrs + xqs)

y |(−ytw + yrs + yqs, ytw + yrs + yqs)

T2,rs,qs (−xrs − xqs, −yrs − yqs)
x |(−xtw − xrs − xqs, xtw − xrs − xqs)

y |(−ytw − yrs − yqs, ytw − yrs − yqs)

T3,rs,qs (+xrs − xqs, +yrs − yqs)
x |(−xtw + xrs − xqs, xtw + xrs − xqs)

y |(−ytw + yrs − yqs, ytw + yrs − yqs)

T4,rs,qs (−xrs + xqs, −yrs + yqs)
x |(−xtw − xrs + xqs, xtw − xrs + xqs)

y |(−ytw − yrs + yqs, ytw − yrs + yqs)

Table 2. Location and domain of each T term
for xrs = -xqs = xtw and yrs = -yqs = ytw .

Term Center Coordinate Non-zero Range

T1,rs,qs (0, 0)
x |(−xtw, xtw)

y |(−ytw, ytw)

T2,rs,qs (0, 0)
x |(−xtw, xtw)

y |(−ytw, ytw)

T3,rs,qs (+2xtw, +2ytw)
x |(xtw, 3xtw)

y |(ytw, 3ytw)

T4,rs,qs (−2xtw, −2ytw)
x |(−3xtw, −xtw)

y |(−3ytw, −ytw)



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 5997

Fig. 3. Simulation results for an HOC with unshifted images. (A): Input images. (B):
|Sf |2 Output for an APW phase difference of π and π/2. The yellow circles denote the
area within which both the cross-correlation and convolution terms are confined. (C): APW
phase difference vs. the total power of the encircled area.

Fig. 4. Simulation results for an HOC with images shifted in opposite directions by
(± xtw,± ytw). (A): Input images. (B): |Sf |2 Output for an APW phase difference of π and
π/2. Here, the yellow circles denote the areas within which the correlation terms are confined.
The red squares show the (-xtw : xtw, -ytw : ytw) range within which the convolution terms
are confined. (C): APW phase difference vs. the total power of the encircled area.

4. Experimental Implementation

We note that, for a general situation with arbitrary images, neither the sizes of any of the query
images nor any inherent shift they may possess are known a priori. As such, it is not possible
to precisely determine the requisite values of xrs = -xqs = xtw and yrs = -yqs = ytw. However, the
query image will exist within the physical dimensions of the SLM, which will define both the
non-zero range and center position of an unshifted image. Similarly, for the reference arm, the
image will be constrained by the HMD from which it is read. Thus, we may redefine xqw, yqw,
xrw, and yrw to be half of the width and height of the active area of the projection device, rather
than the particular image, simultaneously updating the definition of xtw and ytw to use these new
values. It is easy to see that this does not affect the definition of Hr,cen and Hq,cen from Eq. (7),
and so the rest of the derivation remains the same. By considering the dimensions of the active
area rather than the images, we are able to induce a shift of± xtw and± ytw by moving the SLM
and HMD at the input planes of the image arms. Of course, an image may yet be shifted within
the active area, but it will never extend beyond it. Thus, the convolution and correlation terms
will still move in response to a shift in the image, but they will be confined to a predetermined
region of the output plane.

In the experiments reported here, the HMD was written using an SLM of the same size as
the one in the query arm, which measured 6.9× 3.9 mm, yielding values of xrw = xqw = 3.45 mm,
yrw = yqw = 1.95 mm, xtw = 6.9 mm, and ytw = 3.9 mm. In practice, it is difficult to shift the SLM
and HMD by exactly± xtw and± ytw. However, it is not strictly necessary to shift the images by
these exact values. From the equations shown in Table 1, it is easy to see that as long as Hr
and Hq are shifted in opposite directions such that the distance between them is greater than
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Fig. 5. (A): PMTs of artificial FTs. (B): PMTs of real images. Bottom row (both A and
B): PMTs used for the experiments presented here. Middle row (both A and B): Magnitude
of the FTs used to generate the PMTs. Top row (B only): original images that correspond
to the FTs in the middle row. (Column A.1): Reference FT and the corresponding PMT.
(Column A.2): FT and PMT of the same image as (A.1) with 45° of rotation. (Column A.3):
FT and PMT of the same image as (A.1) with 45° of rotation and scaled by a factor of 3.75.
(Column B.1): Original Image, FT, and PMT of a picture of a Soyuz capsule. (Column B.2):
Original Image, FT, and PMT of a picture of an F-22 fighter jet. (Column B.3) Original
Image, FT, and PMT of the same image as (B.2) with 30° of rotation.

2xtw and 2ytw, the convolution and correlation terms will never overlap. Notably, if this shift is
asymmetric, which may often be the case in the real world, then the convolution terms will not be
centered about (0,0) but will instead exist in opposite quadrants to the correlation terms. As such,
if we want to block the unwanted signals, the DC block in Fig. 4 can be replaced by an ellipse. In
practice, a better approach is to detect only one of the cross-correlations signals (since the two
cross-correlation signals contain the same information) in one of the quadrants (depending on
the choice of off-axes shifts employed) and block the signals outside the region of interest.

We have previously shown how the PMT can be used to allow the HOC to recognize images
with variations in shift, scale, and rotation [14,20]. Figure 5 shows the PMTs that were used as
input images for the experiments presented here. In Fig. 5(A), we have used artificially generated
FTs with shapes for which the PMT images are easy to interpret. Since these FTs are real-valued,
there is no real-valued image pattern that would produce these FTs. As such, this case is meant
to be for illustrative purposes only. It should be noted [14,20] that when carrying out the PMT
process, it is essential to exclude a small area around the center of the FTs, which is equivalent
to applying a DC block. For the cases shown in Fig. 5(A), the FTs were by design constructed
with null values at the center, thus obviating the need for applying a DC block during the PMT
process. In Fig. 5(B), we have used actual images. Since the FTs of these images have non-zero
DC values, we have employed the requisite DC block with the same radius for each image.

5. Results and discussion

A 2 mm thick PQ:PMMA HMD with 1,320 images was created as described in [21]. The disc
was installed in the reference arm of the HOC, serving as the projection method for the reference
image. The HMD readout was set to the PMT in Fig. 5(A.1) and kept constant throughout the
experiments presented here. Thus, all of the data share the same reference image. Additionally,
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the PZTs and PID loop of the PS arm were disabled, and the optical bench was not actively
isolated. Under this condition, the absolute and relative phases of the APWs vary randomly, as
we had determined before. The results reported here demonstrate that the HOC yields signals
that do not depend on these phase variations, as a result of using the off-axis technique.

Figure 6 shows the optical output of the HOC for three sample experiments. The FPAout
captures displayed in Figs. 6(A.2), 6(B.2), and 6(C.2) show various peaks that correspond to the
convolution signal, the correlation signal, and additional noise from the optical FT. The region
corresponding to the correlation was identified via the equations in Table 1, considering the
physical shift of the SLM and the HMD. This location remains unchanged for any experiment
carried out with the same shifts. Here we identify two figures of merit for the correlation results:
the total power and the peak value, where the former is defined as the sum of the pixel values
in the correlation region. It is useful to normalize these two coefficients separately, as they
will have entirely different scales. To do this, we divide each value in an experiment by that
obtained in a reference autocorrelation. The experiment shown in Fig. 6(A) was used as such an

Fig. 6. Three sample experiments on the HOC. In all cases the reference image corresponds
to the PMT in Fig. 5(A.1), as read out from an HMD. (A): Autocorrelation. This data was
used to normalize the total and peak powers shown in all other experiments. (B): Correlation
between the reference and the PMT in Fig. 5(A.3), wherein there is a relative shift and scale
between the two ‘original’ images. (C): Correlation between the reference and the PMT in
Fig. 5(B.1), wherein no match is expected. (1): The reference and query images. (2): The
optical signal measured on FPAout with a DC-blocking mask. All of the insets show the
same region and correspond to the isolated correlation signal. The ‘Power’ is taken to be the
sum of the pixel values in this region divided by the result from the autocorrelation. (3): A
perspective view of the isolated correlation signal, where an orange line highlights the peak.
The data is here scaled by the peak value of the autocorrelation.
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autocorrelation and serves as a reference with which to normalize subsequent results; thus, the
total power and peak values shown in Figs. 6(A.2) and 6(A.3) are both equal to unity by construct.

Figure 6(B) shows the case where the query image is rotated and scaled with respect to the
reference image. In this case, the PMT has a shift to the right due to the scaling, and an upward
shift due to the rotation, where any section of the figure that has exited the top is reinserted
at the bottom. The latter behavior is due to the cyclical nature of the PMT, and effectively
splits the correlation into two sections [14,20]. This splitting manifests itself as a separation of
the correlation peak into two smaller peaks in the horizontal axis of the output. The precise
separation of the peaks is directly proportional to the rotation of the original image, modulo
π, and so can be used to extract this information. Similarly, the horizontal shift in the PMT is
proportional to the scale of the image, and results in a vertical shift of the output. Both of these
effects can be observed in Figs. 6(B.2) and 6(B.3). The total correlation power was measured to
be 0.97, indicating a match between the query and reference images. Additionally, the peak also
had a value of unity, but this will not always be the case for images with rotation, and so the total
power is the preferred figure of merit for SSRI image recognition. The peak value may be used
as a secondary coefficient, whereby a large value indicates an increased confidence in the match.
Figure 6(C) presents an experiment where the reference and query images were entirely different.
To determine whether we have a match or not, we chose to use 0.8 as the threshold value of the
(normalized) total power. The choice of this value for the threshold is justified from comparisons
of the results for all the query images, as illustrated in the next paragraph. In this case, the total
power shown in Fig. 6(C.2) was measured to be 0.54, thus indicating that no match was found.

A total of 85 experiments like those shown in Fig. 6 were performed, a number not previously
achievable in the same experimental session due to the phase stability requirement. Figure 7
shows a violin scatter plot of the results, where the vertical axis presents the normalized total
correlation power. The curves are interpolated splines of the histograms of the data and are
used for visualization purposes only. The threshold value of 0.8 mentioned above was used to
separate the data into ‘matches’ (blue) and ‘mismatches’ (red), achieving a detection rate of
100%. In total, the 45 results determined to be matches present a median value of 1.024, with
a standard deviation of 0.062. These results show successful operation of the HOC for SSRI
target recognition but are limited in that they only utilize an artificial PMT as the reference image.
Further experiments are required with a real-world reference image in order to better estimate the
performance of this device.

Fig. 7. Distribution of the total correlation power from 85 experiments on the HOC using
the off-axis technique. The curves are interpolated splines of the histograms of the data and
are used to improve visualization of the results. The values are normalized according to a
reference autocorrelation. Blue: Data above a threshold of 0.8, presenting a median value of
1.024 with a standard deviation of 0.062. Red: Data below a threshold of 0.8.



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 6001

6. Conclusion

Previous iterations of the HOC required a complex and unstable PS segment in order to extract
a usable correlation signal from the output. The off-axis technique presented here allows this
architecture to perform image correlations without the need for active control of the optical phases
of the APWs. Both theoretical and practical aspects of this approach have been investigated,
yielding results that indicate a successful decoupling of the results from optical phase instabilities.
Images with variations in shift, scale, and rotation were tested without phase scanning or active
isolation of the optical bench. The system was able to categorize the images correctly and
consistently as ‘match’ or ‘no match,’ while also providing information about the relative rotation
and scale between the two inputs. By incorporating the off-axis technique into the HOC, the phase
stability requirement is essentially removed, thus opening the doors to real-world implementations
of this image correlation architecture.
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