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ABSTRACT 

 

Superluminal and Subluminal Lasers for Precision Metrology 

 

Joshua Marcus Yablon 

 

Optical interferometry is a powerful technique which has been widely utilized for well over 

a century in making the world’s most precise measurements. By measuring how the interference 

between two waves is affected by a physical process, one can deduce the magnitude of this process. 

Because the wavelength of a typical laser beam is very short, the phase shift between two beams 

of light can be enormously affected by very small perturbations.  

There will always be a need for even more sensitive interferometers. Our approach to 

increasing sensitivity is to use so-called fast-light (or superluminal) lasers and slow-light (or 

subluminal) lasers in which the group velocity of the intra-cavity lasing beam is faster and slower, 

respectively, than the vacuum speed of light. We have successfully demonstrated lasers with both 

superluminal and subluminal effects, which promise to be of significant utility in high precision 

optical metrological applications. 

In this thesis, we first present the demonstration of a superluminal Diode-Pumped Alkali 

Laser (DPAL) with a Raman resonance induced dip in the center of the gain profile, with a factor 

of sensitivity enhancement as high as 190 relative to a conventional laser. This laser has potential 

applications in many precision measurement applications such as rotation, vibration, and 
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gravitational wave detection. We also present the demonstration of a subluminal Raman laser with 

a factor of sensitivity suppression as high as 663 relative to a conventional laser. Such a laser is 

highly self-stabilized, and is expected to have a far smaller Schawlow-Townes linewidth. As a 

result, this laser may also offer significant utility in the fields of high-precision optical metrology, 

as well as passive frequency stabilization. 
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CHAPTER 1 

INTRODUCTION TO OPTICAL INTERFEROMETRY 

 

Optical interferometry has been utilized for well over a century in making the world’s most 

precise measurements. The basic idea behind interferometry is quite simple: in order to detect and 

measure a physical process, one can measure how the interference between two waves is affected 

by this process. The principle of superposition (and therefore constructive and destructive 

interference) is characteristic of all waves so that interferometry can, in principle, be performed 

with any type of wave (water waves, waves on a string, electromagnetic waves, atomic waves, 

etc.) The reason electromagnetic waves are generally used for precision applications is because 

the wavelength of light is less than one micron (one millionth of a meter), so that the phase shift 

between two beams of light can be enormously affected by very small perturbations. It should also 

be mentioned that atomic waves, which have wavelengths several orders of magnitude smaller 

than electromagnetic waves, may one day replace electromagnetic waves as the paradigm of 

precision interferometry -- indeed, atomic wave interferometry is an active field of research, 

however the technology is likely several decades away from being feasible for most metrological 

applications. 

The idea of using optical interferometry for precision measurements has been around since 

the 1860’s when James Clerk Maxwell first discovered that light is an electromagnetic wave. One 

of the earliest and most significant successes of optical interferometry was the Michelson-Morley 

experiment [1], which was performed in the year 1887. At the time, physicists postulated that since 

light could propagate through vacuum, there must exist a medium called the “luminiferous aether” 

through which the propagation of electromagnetic radiation in vacuum is mediated. Albert 
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Michelson and Edward Morley supposed that unless the sun is universally at rest, the aether should 

have some non-zero velocity relative to the sun, so that the speed of the “aether wind” measured 

from the Earth should vary as the Earth revolves around the sun. This would imply that the speed 

of light should be slightly different in the Spring than it is in the Fall, due to different amounts of 

“aether drag”. They built an interferometer to measure the interference fringes of light to see if the 

locations of these fringes varied over the course of a year. After failing to distinguish a first-order 

change in the locations of these fringes, they concluded that if the aether does exist, the Earth drags 

the aether along with it as it revolves around the sun. In subsequent experiments performed in the 

early 1900’s [2,3,4,5,6,7], second-order changes in the interference fringes also went undetected, 

leading physicists to abandon the theory of the luminiferous aether altogether. This ultimately led 

to the discovery of the Lorentz transformation, eventually resulting in Einstein’s theory of Special 

Relativity which not only explained the null result of the Michelson-Morley experiment, but in 

fact required it. 

In the 21st century, optical interferometry continues to be an important technique for 

making precision measurements. In February of 2016, the Laser Interferometer Gravitational-

Wave Observatory (LIGO), a worldwide collaboration with over 1,000 scientists across the globe, 

announced that after more than two decades of trying in earnest, they had finally detected their 

first gravitational wave [8]. This detection was the first of countless events that will be detected 

going forward -- the sensitivity of LIGO will only continue to improve, enabling it to detect events 

originating from weaker sources and from greater distances. As a result, LIGO should eventually 

be able to detect gravitational waves every second of every minute of every hour of every day. 

This has profound implications, because the ability to detect the signatures of gravitational 

radiation enables astrophysicists to measure and characterize the nature of astronomical events 
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such as black hole and neutron star mergers, supernova explosions, and may even provide direct 

evidence regarding the creation of the universe. 

No matter how sensitive an interferometer is, there will always be a need to make it even 

more sensitive. For many years, our laboratory has investigated theoretically and experimentally 

how slow light (light with group velocity less than the vacuum speed of light) and fast light (light 

with group velocity greater than the vacuum speed of light) can be used to enhance optical 

interferometry. As will be described in this thesis, we have concluded that the best way to achieve 

such a goal is to use so-called fast-light (or superluminal) lasers and slow-light (or subluminal) 

lasers in which the group velocity of the intra-cavity lasing beam is faster and slower, respectively, 

than the vacuum speed of light. We have conducted several experiments where we successfully 

demonstrated the existence of superluminal and subluminal effects in lasers with corresponding 

enhancements and reductions in sensitivity. This thesis describes these experiments, the results of 

these experiments, and their significance. 
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1.1 Interference 

A wide variety of physical effects can be detected by combining two (or more) beams of 

light and measuring the interference between them. Before the invention of lasers, white light was 

often used in interferometry, so that the location of an interference fringe depended on the 

particular wavelength component. When measuring the physical effect of interest, these fringes 

would shift; the magnitude of this shift would be used to determine the magnitude of the effect 

being measured. 

 
Fig. 1.1: Interference fringes resulting from white light propagating through a  

double slit. The 𝑚th fringe for a particular wavelength 𝜆 is located at an  

angle 𝜃𝑚 such that 𝑑𝑠𝑖𝑛(𝜃𝑚) = 𝑚𝜆, where 𝑑 is the distance between slits. 

 

In modern optical interferometry, lasers are almost always used as the light source because 

laser light is monochromatic, coherent, and collimated. The basic idea behind laser interferometry 

is to split a laser beam into two, let the beams propagate through their own paths, and finally 
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recombine them. Since laser light is coherent, it has a definite phase; the phase shift between the 

two beams is indicative of the optical path length difference between the two paths. Due to the 

short wavelength of light (on the order of half a micron), a very small perturbation can result in a 

very large phase shift. The magnitude of this phase shift is related to the amplitude of the resulting 

interference signal, as shown in Figure 1.2. This amplitude is proportional to the square root of 

intensity, which is measured with a photodetector. 

 
Fig. 1.2: Varying degrees of constructive/destructive interference. (a) Beams are in phase, so  

that the sum has twice the amplitude of the constituent parts. This interference is fully 

constructive; (b) Beams are 2 radians out of phase; in this case, the sum is approximately  

equal in amplitude to the constituent parts; (c) beams are 180° out of phase so that the  

sum is null. This interference is fully destructive. 

 

 

There are many types of optical interferometers such as Michelson, Sagnac, Fizeau, Fabry-

Pérot, Mach-Zehnder, and many more. The following section will describe a few examples of these 

interferometers, how they work, and situations in which different types of interferometers would 

be used to make different types of measurements. 

 



14 

 

1.2 Examples of Interferometers 

1.2.1 Michelson Interferometer 

The Michelson interferometer may be one of the simpler types of interferometers, but it is 

also one of the most historically important, as it was used in the Michelson-Morley experiment [1] 

and is used currently in LIGO. In such a setup, a laser beam is split into two by a 50/50 beam 

splitter (labeled BS in Figure 1.3). The beam propagating in the y-direction travels a distance of 

L1, hits a mirror, and propagates back, thus traveling a total distance of 2L1 before arriving back 

at the BS. Similarly, the beam propagating in the x-direction travels a distance of 2L2 before 

arriving back at the BS. The BS then combines these beams and diverts it into a photodetector. 

 
Fig. 1.3: Schematic of Michelson interferometer 
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When the laser beam first hits the BS, the electric field can be written as �⃗� = 𝐸𝑜
⃗⃗⃗⃗ 𝑒−𝑖𝜔𝑡, so 

that upon re-arrival at the BS, the electric fields of beam 1 and beam 2, 𝐸1
⃗⃗⃗⃗  and 𝐸2

⃗⃗⃗⃗ , respectively, 

are: 

𝐸1
⃗⃗⃗⃗ =

𝐸𝑜

2

⃗⃗⃗⃗ 
𝑒𝑖(2𝑘𝐿1−𝜔𝑡) (1.1) 

𝐸2
⃗⃗⃗⃗ =

𝐸𝑜

2

⃗⃗⃗⃗ 
𝑒𝑖(2𝑘𝐿2−𝜔𝑡) (1.2) 

where 𝑘 = |�⃗� | =
2𝜋

𝜆
 is the wavevector and 𝜔 = 2𝜋𝑓 is the (angular) frequency of the beam. The 

BS combines these two beams (while throwing away half the power from each of them), so that 

the electric field entering the photodetector is: 

𝐸𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

𝐸1
⃗⃗⃗⃗ + 𝐸2

⃗⃗⃗⃗ 

2
=

1

2
(
𝐸𝑜

2

⃗⃗⃗⃗ 
𝑒𝑖(2𝑘𝐿1−𝜔𝑡) +

𝐸𝑜

2

⃗⃗⃗⃗ 
𝑒𝑖(2𝑘𝐿2−𝜔𝑡)) =

𝐸𝑜

4

⃗⃗⃗⃗ 
𝑒−𝑖𝜔𝑡(𝑒𝑖2𝑘𝐿1 + 𝑒𝑖2𝑘𝐿2) (1.3) 

The intensity received by the photodetector is proportional to the square of the electric field: 

𝐼 =
𝑐𝑛𝜀𝑜

2
|𝐸𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗  ⃗|

2
=

𝑐𝑛𝜀𝑜𝐸𝑜
2

8
|𝑒−𝑖𝜔𝑡|

2
[1 + cos(2𝑘(𝐿2 − 𝐿1))]

=
𝑐𝑛𝜀𝑜𝐸𝑜

2

4
|𝑒−𝑖𝜔𝑡|

2
𝑐𝑜𝑠2(𝑘(𝐿2 − 𝐿1)) 

(1.4) 

where n is the refractive index, which is approximately unity in air. Even the fastest available 

photodetectors have sampling rates several orders of magnitude lower than optical frequencies, so 

that the time-averaged intensity is the physically-relevant quantity. 

〈𝐼〉 =
𝑐𝑛𝜀𝑜𝐸𝑜

2

4
〈|𝑒−𝑖𝜔𝑡|

2
〉 𝑐𝑜𝑠2(𝑘(𝐿2 − 𝐿1)) =

𝑐𝑛𝜀𝑜𝐸𝑜
2

8
𝑐𝑜𝑠2(𝑘(𝐿2 − 𝐿1)) (1.5) 

Therefore, intensity maxima are seen when 𝛥𝐿 ≡ 𝐿2 − 𝐿1 = 0,±
𝜆

2
, ±𝜆, ±

3𝜆

2
, etc. while 

intensity minima are seen when 𝛥𝐿 = ±
𝜆

4
, ±

3𝜆

4
, ±

5𝜆

4
, etc. In a scenario where one of the mirrors 
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is fixed while the other mirror is moveable, the photodetector signal goes from a maximum to a 

minimum when the mirror is displaced by a distance of 𝜆 4⁄ . Since optical wavelengths are a few 

hundred nanometers in length, the Michelson interferometer measures displacements quite 

sensitively. One of the most famous and modern uses of Michelson interferometry is in the 

detection of gravitational waves, which will be described in the next section. 

 

1.2.2 Gravitational Wave Detector 

Gravitational radiation is produced by the acceleration of mass, analogous to how 

electromagnetic radiation is produced by the acceleration of charge. The Einstein field equations 

[9] are a set of ten differential equations governing the behavior of gravitational waves, analogous 

to how Maxwell’s equations govern the behavior of electric and magnetic fields. However, 

gravitational waves are far more difficult to detect than their electromagnetic counterparts because 

gravitational forces are generally much weaker than electromagnetic forces. The strongest (and 

therefore easiest-to-detect) gravitational waves come from large astronomical events such as black 

hole mergers, but because these events most often occur millions (or billions) of light years away, 

the gravitational radiation is very weak by the time it reaches Earth. In the far field, the phase 

fronts of a gravitational wave are planar and the Einstein field equations are simplified. If the 

propagation direction of a far-field gravitational wave is denoted as z, then the 𝑥 and 𝑦 components 

of the spacetime metric can be written as: 

𝑑𝑥2 = 𝑐2[1 + ℎ𝑐𝑜𝑠(𝜔𝐺𝑅𝐴𝑉𝑡)]𝑑𝑡2 (1.6) 

𝑑𝑦2 = 𝑐2[1 − ℎ𝑐𝑜𝑠(𝜔𝐺𝑅𝐴𝑉𝑡)]𝑑𝑡2 (1.7) 
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where 𝑥 and 𝑦 are the “polarization axes” while ℎ and 𝜔𝐺𝑅𝐴𝑉 are the stress/strain coefficient and 

angular frequency, respectively, of the gravitational wave. Equations 1.6 and 1.7 indicate that a 

gravitational wave stretches and compresses space in the 𝑥 and 𝑦 directions in a manner such that 

when one polarization direction is fully stretched, the other direction is fully compressed. This 

process of stretching and compressing occurs at a frequency of 𝜔𝐺𝑅𝐴𝑉 and with a strain (fractional 

change in length) of h. The reason gravitational waves are incredibly difficult to detect is because 

h is very small (usually no more than 10-20). Because ℎ ≪ 1, Equations 1.6 and 1.7 can be 

approximated as: 

𝑑𝑥 ≅ 𝑐 [1 +
ℎ

2
(𝜔𝐺𝑅𝐴𝑉𝑡)] 𝑑𝑡 (1.8) 

𝑑𝑦 ≅ 𝑐 [1 −
ℎ

2
(𝜔𝐺𝑅𝐴𝑉𝑡)] 𝑑𝑡 (1.9) 

To detect a gravitational wave, a Michelson interferometer can be set up as shown in Figure 

1.4. Without loss of generality, the following calculation assumes that the gravitational wave 

propagates in the 𝑧-direction, that the legs of the interferometer (the 𝑥- and 𝑦- axes) are aligned 

with the polarization of the gravitational wave, and that each leg has a length of 𝐿. 
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Fig. 1.4: Michelson Interferometer with a far-field gravitational  

wave propagating through it 

 

If the optical frequency emitted from the laser is 𝜔, then the instantaneous differential phases in 

the 𝑥- and 𝑦-directions are: 

𝛿𝜑𝑋 =
𝜔ℎ

2
𝑐𝑜𝑠(𝜔𝐺𝑅𝐴𝑉𝑡) (1.10) 

𝛿𝜑𝑌 = −
𝜔ℎ

2
𝑐𝑜𝑠(𝜔𝐺𝑅𝐴𝑉𝑡) (1.11) 

Because the legs of gravitational wave detectors are long (for example, in LIGO, 𝐿=4 km), the 

phase of the gravitational wave and therefore the values of 𝛿𝜑𝑋 and 𝛿𝜑𝑌 can change as the light 

is propagating through the interferometer. Therefore, upon arrival at the photodetector, the 

accumulated phase delays are: 
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𝛥𝜑𝑋 = ∫ (𝛿𝜑𝑋)𝑑𝑡′
𝑡′=𝑡+𝜏

𝑡′=𝑡

=
𝜔ℎ

2
∫ 𝑐𝑜𝑠(𝜔𝐺𝑅𝐴𝑉𝑡′)𝑑𝑡′

𝑡′=𝑡+𝜏

𝑡′=𝑡

=
𝜔ℎ

2𝜔𝐺𝑅𝐴𝑉
[𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡 + 𝜏)) − 𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡)]

=
𝜔ℎ

2𝜔𝐺𝑅𝐴𝑉
[𝑠𝑖𝑛 (𝜔𝐺𝑅𝐴𝑉 (𝑡 +

2𝐿

𝑐
)) − 𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡)] 

(1.12) 

𝛥𝜑𝑌 = −𝛥𝜑𝑋 =
𝜔ℎ

2𝜔𝐺𝑅𝐴𝑉
[𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡) − 𝑠𝑖𝑛 (𝜔𝐺𝑅𝐴𝑉 (𝑡 +

2𝐿

𝑐
))] (1.13) 

where 𝜏 ≡
2𝐿

𝑐
 is the light propagation time inside the interferometer. Therefore, the phase 

difference between the two beams upon re-arrival at the beam splitter is: 

𝛥𝜑 = 𝛥𝜑𝑋 − 𝛥𝜑𝑌 =
𝜔ℎ

𝜔𝐺𝑅𝐴𝑉
[𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡 + 𝜏)) − 𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉𝑡)] (1.14) 

Therefore, the sum of the electric fields entering the photodetector is: 

�⃗� = �⃗� 1 + �⃗� 2 =
�⃗� 𝑜
2

𝑐𝑜𝑠 (𝜔𝑡 −
𝛥𝜑

2
) +

�⃗� 𝑜
2

𝑐𝑜𝑠 (𝜔𝑡 +
𝛥𝜑

2
) (1.15) 

For |𝛥𝜑| ≪ 1, 𝑐𝑜𝑠 (𝜔𝑡 ±
𝛥𝜑

2
) ≅ 𝑐𝑜𝑠(𝜔𝑡) ∓

𝛥𝜑

2
𝑠𝑖𝑛(𝜔𝑡). Therefore: 

�⃗� ≅ �⃗� 𝑜 [𝑐𝑜𝑠(𝜔𝑡) +
𝛥𝜑

2
𝑠𝑖𝑛(𝜔𝑡)]

= �⃗� 𝑜 {𝑐𝑜𝑠(𝜔𝑡)

+
𝜔ℎ

𝜔𝐺𝑅𝐴𝑉
[𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉(𝑡 + 𝜏)) − 𝑠𝑖𝑛(𝜔𝐺𝑅𝐴𝑉𝑡)]𝑠𝑖𝑛(𝜔𝑡)} 

(1.16) 

Therefore, there are sidebands with frequencies of 𝜔𝑁 ≡ 𝜔 ± 𝑁𝜔𝐺𝑅𝐴𝑉, where 𝑁 is an integer. This 

is because the gravitational wave provides phase modulation on the two interfering beams. The 
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first-order sidebands (𝑁 = ±1) are the least difficult to detect. The intensities of the first-order 

sidebands, |𝐸𝑆𝐵
⃗⃗ ⃗⃗ ⃗⃗  |

2
 are: 

|𝐸𝑆𝐵
⃗⃗ ⃗⃗ ⃗⃗  |

2

|𝐸𝑜
⃗⃗⃗⃗ |

2 = (
𝜔ℎ

𝜔𝐺𝑅𝐴𝑉
)
2

𝑠𝑖𝑛2(𝜔𝐺𝑅𝐴𝑉𝜏) (1.17) 

 
Fig. 1.5: Normalized intensity of the first-order sidebands in the  

Michelson gravitational wave detector 

 

Evidently the detector sensitivity is highest for low-frequency gravitational waves 

(𝜔𝐺𝑅𝐴𝑉 ≪
𝜋

𝜏
), and has “dead bands” located at integer multiples of 𝜋 𝜏⁄ . The LIGO detectors have 

arms that are 4 km long so that 𝜏 =
2𝐿

𝑐
= 26.7𝜇𝑠; thus, gravitational wave frequencies at integer 

multiples of 117.8 kHz cannot be detected. Most gravitational waves of interest have frequencies 

as low as 1 Hz and as high as a few kHz, so these dead bands are not much of an issue in most 

cases. 

In February 2016, LIGO announced the first direct detection of a gravitational wave 

emitted from a binary black hole merger [8]. This international collaboration with over 1,000 



21 

 

scientists across the world had finally made the first successful detection of a gravitational wave 

after working on this project for over 20 years. With a strain of approximately 10−20, the 4 km 

legs expanded and contracted by a length less than the diameter of a proton. The detection of these 

miniscule perturbations was arguably the most impressive feat of engineering ever achieved by 

humankind, and, more importantly, opened a new realm of experimental astrophysics which had 

been previously inaccessible. Since then, LIGO has detected several more gravitational waves, and 

continues to improve detector sensitivity and data analysis methods. 

 

1.2.3 Sagnac Interferometer 

The Sagnac interferometer is a type of optical interferometer which finds most of its 

applications in the field of gyroscopy, which is the measurement of rotation. In a Sagnac 

interferometer, a laser beam is split into two; the transmitted beam travels counter-clockwise 

around a loop while the reflected beam travels clockwise, as shown in Figure 1.6. These two beams 

overlap spatially so that if there is no rotation (𝛺 = 0), the two beams propagate the same distance 

and over the same period of time, and therefore arrive back at the BS in phase, thus undergoing 

constructive interference. However, in the presence of rotation, one beam travels slightly farther 

(and takes a slightly longer time) than the other beam, so that they arrive back at the BS with a 

non-zero phase difference. This phase difference results in some degree of destructive interference, 

which is seen by the photodetector as a reduction in intensity. 
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Fig. 1.6: A Sagnac interferometer. For simplicity of our calculation, we have drawn a 

circular loop. However, a Sagnac interferometer can be triangular, rectangular, etc. 

 

If the radius of the loop is R and the rate of rotation is Ω, relativistic addition of velocities gives 

the velocity of the counter-clockwise-propagating phase front as: 

𝑉𝐶𝐶𝑊 =
𝑉𝑃𝐻 + 𝑅𝛺

1 + (
𝑉𝑃𝐻𝑅𝛺

𝑐2 )
 (1.18) 

while the velocity of the clockwise-propagating phase front is: 

𝑉𝐶𝑊 =
𝑉𝑃𝐻 − 𝑅𝛺

1 − (
𝑉𝑃𝐻𝑅𝛺

𝑐2 )
 (1.19) 

where 𝑉𝑃𝐻 ≡
𝑐

𝑛
 is the phase velocity of light, where 𝑛 is the refractive index of the medium filling 

the interferometer. The distance traveled by the counter-clockwise beam exceeds that traveled by 

the clockwise beam, with roundtrip paths given by: 

𝐿𝐶𝐶𝑊 = 2𝜋𝑅 + 𝑅𝛺𝑡𝐶𝐶𝑊 (1.20) 

𝐿𝐶𝑊 = 2𝜋𝑅 − 𝑅𝛺𝑡𝐶𝐶𝑊 (1.21) 
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where 𝑡𝐶𝐶𝑊 and 𝑡𝐶𝑊 are the roundtrip propagation times of the counter-clockwise and clockwise 

phase fronts, respectively. The definition of velocity yields: 

𝑡𝐶𝐶𝑊 =
𝐿𝐶𝐶𝑊

𝑉𝐶𝐶𝑊
 (1.22) 

𝑡𝐶𝑊 =
𝐿𝐶𝑊

𝑉𝐶𝑊
 (1.23) 

Putting together equations 1.20 and 1.22 and equations 1.21 and 1.23 results in: 

𝑡𝐶𝐶𝑊 =
2𝜋𝑅

𝑉𝐶𝐶𝑊 − 𝑅𝛺
=

2𝜋𝑅(𝑐2 + 𝑅𝛺𝑉𝑃𝐻)

𝑉𝑃𝐻(𝑐2−(𝑅𝛺)2)
 (1.24) 

𝑡𝐶𝑊 =
2𝜋𝑅

𝑉𝐶𝑊 + 𝑅𝛺
=

2𝜋𝑅(𝑐2 − 𝑅𝛺𝑉𝑃𝐻)

𝑉𝑃𝐻(𝑐2−(𝑅𝛺)2)
 (1.25) 

The time delay between the two beams is therefore: 

𝛥𝑡𝑜 = 𝑡𝐶𝐶𝑊 − 𝑡𝐶𝑊 =
4𝜋𝑅2𝛺

𝑐2−(𝑅𝛺)2
=

4𝐴𝛺

𝑐2−(𝑅𝛺)2
=

4𝐴𝛺

𝑐2(1 − 𝛽2)
 (1.26) 

where 𝐴 = 𝜋𝑅2 is the area enclosed and 𝛽 ≡
𝑅𝛺

𝑐
. In the non-relativistic limit, 𝛽 ≪ 1, so that: 

𝛥𝑡𝑜 ≈
4𝐴𝛺

𝑐2
 (1.27) 

Therefore, the phase difference between the two beams is: 

𝛥𝜑𝑜 = ω𝛥𝑡𝑜 =
4𝐴𝛺ω

𝑐2
=

8𝜋𝐴𝛺

𝑐𝜆𝑜
 (1.28) 

where ω and 𝜆𝑜 are the angular frequency and vacuum wavelength of the laser, respectively. More 

generally, if the axis of rotation is not perpendicular to the gyroscope, then: 

𝛥𝜑𝑜 =
8𝜋𝐴 ∙ �⃗� 

𝑐𝜆𝑜
 (1.29) 
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where 𝐴  is the “area vector” which has a magnitude of 𝐴 and is perpendicular to the gyroscopic 

plane, and �⃗�  is the angular velocity vector. According to Equation 1.29, the phase shift is 

proportional to enclosed area. It can be shown using Stokes’ theorem that the phase shift (in the 

non-relativistic limit where 𝑅𝛺 ≪ 𝑐) is always proportional to enclosed area, regardless of shape 

[10]. In addition, the phase shift is independent of refractive index. This result may be counter-

intuitive, but it arises from the fact that the medium is co-rotating with the rest of the apparatus. 

As will be shown in Chapter 2, the lack of dependence on the refractive index ceases to exist when 

the medium is not co-rotating with the rest of the interferometer. 
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CHAPTER 2 

DISPERSION IN OPTICAL METROLOGY 

 

2.1 Introduction to Dispersion 

The index of refraction governs the angle at which light refracts when passing through a 

boundary from medium 1 (the incident medium) to medium 2 (the transmitted medium) via Snell’s 

law: 𝑛1𝑠𝑖𝑛(𝜃1) = 𝑛2𝑠𝑖𝑛(𝜃2), where 𝜃1 and 𝜃2 the respective angles of incidence, measured 

relative to the normal. If the index of a medium is dependent on the frequency of the light 

propagating through it, then different frequencies refract at different angles. One of the most 

famous examples of this is the prism, shown in Figure 2.1. 

 
Fig. 2.1: The angle of refraction is governed by Snell’s law. Because the index in  

glass is wavelength-dependent, a prism separates white light into a rainbow, where  

red has the longest visible wavelength and violet has the shortest visible wavelength. 
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A prism spatially separates different frequencies because the index of refraction of glass is 

not constant in the optical frequency regime. The index as a function of (vacuum) wavelength in 

glass is shown in Figure 2.2, which shows that within the visible range of the electromagnetic 

spectrum, the plot of index versus wavelength has a non-zero slope. 

 
Fig. 2.2: Index of glass versus optical wavelength. Outside the visible spectrum, the curve  

has many sharp peaks and valleys. However, in the visible range, the index has a roughly-

constant slope. This non-zero slope causes the prism to spatially separate optical  

wavelengths into a rainbow. 

 

The index of refraction also governs the velocity at which light propagates through a 

medium, with the relationship 𝑣 =
𝑐

𝑛
, where 𝑐 is the speed of light in vacuum. If an electromagnetic 

pulse propagates through a medium with a frequency-dependent index, then different spectral 

components of this pulse have different velocities, which causes the pulse to spread out or disperse 

as it propagates through the medium. As such, a medium with a frequency-dependent refractive 

index is said to exhibit dispersion. In reality, all media (aside from vacuum) exhibit dispersion, 

because the phenomenon of dispersion fundamentally arises from the interaction between atoms 

and light, as will be shown in Chapter 3. 
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In the absence of dispersion, all electromagnetic frequencies propagate with the same 

velocity 𝑣, so that 𝑣 = 𝑓𝜆 for all values of 𝑓 and 𝜆, or equivalently, 𝜔 = 𝑘𝑣 for all values of 𝜔 

and 𝑘, meaning that 𝜔 increases linearly with 𝑘. On the other hand if 𝜔 is not linear in 𝑘 (i.e. 
𝑑𝜔

𝑑𝑘
≠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), then the medium is dispersive. Consider a dispersive medium in which the first two 

terms of the Taylor expansion of 𝜔(𝑘) around a central frequency 𝜔𝑜 (with corresponding central 

wave vector 𝑘𝑜) are considered: 

𝜔(𝑘) ≅ 𝜔𝑜 +
𝑑𝜔

𝑑𝑘
|
𝑘=𝑘𝑜

∙ (𝑘 − 𝑘𝑜) ≡ 𝜔𝑜 + 𝜔𝑜′ ∙ (𝑘 − 𝑘𝑜) (2.1) 

Consider now a “wave packet” which is spectrally-narrow enough so that all frequency 

components are within the spectral region where this approximation of linear dispersion is valid. 

If this wave packet propagates in the 𝑥-direction through the medium, then the electric field of the 

wave packet at time 𝑡 = 0, denoted as 𝐸(𝑥, 𝑡 = 0), can be spectrally decomposed as follows: 

𝐸(𝑥, 𝑡 = 0) = ∫ Ԑ(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
∞

−∞

 (2.2) 

where Ԑ(𝑘) = ℱ{𝐸(𝑥, 𝑡 = 0)} is the one-dimensional spatial Fourier transform of the electric field 

at 𝑡 = 0. After 𝑡 = 0, the electric field can be expressed as: 

𝐸(𝑥, 𝑡) = ∫ Ԑ(𝑘)𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑘
∞

−∞

= ∫ Ԑ(𝑘 − 𝑘𝑜)𝑒
𝑖{(𝑘−𝑘𝑜)𝑥−𝜔𝑡}𝑑(𝑘 − 𝑘𝑜)

∞

−∞

= 𝑒𝑖(𝑘𝑜𝑥−𝜔𝑜𝑡) ∫ Ԑ(𝑘)𝑒𝑖(𝑘−𝑘𝑜)(𝑥−𝜔𝑜
′ )𝑡

∞

−∞

𝑑𝑘 

(2.3) 

The term before the integral is a monochromatic wave with velocity 𝑣 =
𝜔𝑜

𝑘𝑜
, which is called the 

“phase velocity”. The second term gives the “envelope” of the wave packet, which evidently 
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propagates at a velocity of 𝜔𝑜
′ =

𝑑𝜔

𝑑𝑘
|
𝑘=𝑘𝑜

. This is called the “group velocity”. Group velocity can 

also be expressed in terms of the refractive index and its first derivative with respect to frequency: 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
=

𝑐

𝑛𝑜 + 𝜔𝑜
𝑑𝑛
𝑑𝜔

 (2.4) 

where 𝑛𝑜 is the index of refraction corresponding to the phase velocity 
𝜔𝑜

𝑘𝑜
. The “group velocity 

refractive index” or group index, 𝑛𝑔, is defined in a manner analogous to that of the normal (phase 

velocity) refractive index: 

𝑛𝑔 ≡
𝑐

𝑣𝑔
= 𝑛𝑜 + 𝜔𝑜

𝑑𝑛

𝑑𝜔
 (2.5) 

When 𝑛𝑔 > 1, the group velocity is less than 𝑐, which is called “subluminal” or “slow light”. When 

𝑛𝑔 < 1, the group velocity is greater than 𝑐, which is called “superluminal” or “fast light”. 

The susceptibility of a material, �̃�, is a complex number which will be discussed more in 

Chapter 3; for the purposes of the current discussion, the real part of �̃�, 𝑅𝑒[�̃�] ≡ 𝜒𝑅, is defined as 

follows: 

𝑛 = √1 + 𝜒𝑅 (2.6) 

If 𝜒𝑅 ≪ 1, which is the case for dilute atomic media, then 𝑛 = √1 + 𝜒𝑅 ≅ 1 +
𝜒𝑅

2
, so that: 

𝑛𝑔 = 𝑛𝑜 + 𝜔𝑜

𝑑𝑛

𝑑𝜔
≅ 1 +

𝜒𝑅

2
+

𝜔𝑜

2

𝑑𝜒𝑅

𝑑𝜔
 (2.7) 
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2.2 Using Dispersion to Enhance Interferometry 

Equipped with an understanding of dispersion, we now can try to implement dispersion 

into optical interferometry for the purpose of enhancing sensitivity. We will first solve the case of 

the Sagnac interferometer with a non-co-rotating, linearly-dispersive medium. This is followed 

by analysis of a Sagnac resonator with a co-rotating, linearly-dispersive medium, as well as the 

Sagnac resonator with a co-rotating, non-linearly-dispersive medium. After analyzing the benefits 

and drawbacks of each of these systems, we finally solve the case of the Sagnac laser with a co-

rotating, non-linearly-dispersive medium, which we believe is the most promising system in which 

to enhance metrological sensitivity via material dispersion, for reasons which will be shown in this 

chapter. Although this chapter is dedicated to the analysis of enhancement in Sagnac 

interferometers, it is important to note that this analysis can be extended to all types of optical 

interferometers. 

 

2.2.1 Slow-Light Enhancement in a Sagnac Interferometer 

At the end of Chapter 1, we derived the somewhat counter-intuitive result that the 

sensitivity of a Sagnac interferometer is independent of n, the refractive index of the medium filling 

it. As will be shown in this section, the sensitivity does depend on index when the medium is not 

co-rotating with the rest of the apparatus. To solve the case of a non-co-rotating medium, it is 

instructive to consider the scenario illustrated in Figure 2.3, where an intra-cavity medium with 

constant index 𝑛𝑜 fills the cavity and flows with velocity 𝑉𝑀 relative to the rest frame of the 

gyroscope. 
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Fig. 2.3: Sagnac interferometer with non-co-moving medium 

 

The scenario in which the reference frame and laser source are non-rotating while the 

medium is rotating is equivalent to a scenario in which the reference frame and laser source are 

rotating while the medium is non-rotating. In this case, Fresnel drag results in the two beams being 

Doppler shifted relative to one another, which causes the beam in one direction to be upshifted in 

frequency with a corresponding downshift of frequency in the opposite direction. This Doppler-

induced splitting of frequencies opens the possibility of investigating the effects of dispersion, in 

which case the two directions would experience different refractive indices. 

From the reference frame of the medium, the Doppler shifts in the counter-clockwise and 

clockwise beams are: 

𝛥𝜔𝐶𝐶𝑊 =
ω𝑉𝑀

𝑐
 (2.8) 
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𝛥𝜔𝐶𝑊 = −
ω𝑉𝑀

𝑐
 (2.9) 

where 𝑉𝑀 is the velocity of the medium relative to the rest of the apparatus, as denoted in Figure 

2.3. In the case of a constant-index (non-dispersive) medium, the velocity of the counter-clockwise 

and clockwise phase fronts relative to a stationary non-rotating frame are: 

𝑣𝐶𝐶𝑊 =
𝑐

𝑛𝑜
+ 𝑣 (1 −

1

𝑛𝑜
2
) (2.10) 

𝑣𝐶𝑊 =
𝑐

𝑛𝑜
− 𝑣 (1 −

1

𝑛𝑜
2
) (2.11) 

where 𝑛𝑜 is the refractive index of the medium filling the gyroscope, and 𝑣 = 𝑅𝛺. The factor of 

1 −
1

𝑛𝑜
2 is called the Fresnel drag coefficient [11] which arises from the fact that light is slowed 

down or sped up inside the medium when the medium is moving relative to the light source. If the 

dispersion relation is Taylor-expanded around a frequency of 𝜔𝑜, then to first-order, the refractive 

index takes on the following form: 

𝑛(𝜔) ≃ 𝑛(𝜔𝑜) + (𝜔 − 𝜔𝑜) ∙
𝜕𝑛

𝜕𝜔
|
𝜔=𝜔𝑜

≡ 𝑛𝑜 + 𝛥𝜔 ∙
𝜕𝑛

𝜕𝜔
 (2.12) 

In such a medium, the velocity of the counter-clockwise and clockwise phase fronts relative to a 

stationary non-rotating frame are: 

𝑣𝐶𝐶𝑊 =
𝑐

𝑛𝑜
(1 −

1

𝑛𝑜
(𝛥𝜔𝐶𝐶𝑊 ∙

𝜕𝑛

𝜕𝜔
)) + 𝑣 (1 −

1

𝑛𝑜
2
) (2.13) 

𝑣𝐶𝑊 =
𝑐

𝑛𝑜
(1 −

1

𝑛𝑜
(𝛥𝜔𝐶𝑊 ∙

𝜕𝑛

𝜕𝜔
)) − 𝑣 (1 −

1

𝑛𝑜
2
) (2.14) 

As should be expected, Equations 2.13 and 2.14 simplify to Equations 2.10 and 2.11 in the absence 

of dispersion. Putting together Equations 2.8, 2.9, 2.12, 2.13, and 2.14 results in: 
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𝑣𝐶𝐶𝑊 =
𝑐

𝑛𝑜
+ (

𝑉𝑀

𝑛𝑜
2
∙ 𝜔

𝜕𝑛

𝜕𝜔
) + 𝑣 (1 −

1

𝑛𝑜
2
) =

𝑐

𝑛𝑜
+ (

𝑉𝑀

𝑛𝑜
2
(𝑛𝑔 − 𝑛𝑜)) + 𝑣 (1 −

1

𝑛𝑜
2
) (2.15) 

𝑣𝐶𝑊 =
𝑐

𝑛𝑜
− (

𝑉𝑀

𝑛𝑜
2
∙ 𝜔

𝜕𝑛

𝜕𝜔
) − 𝑣 (1 −

1

𝑛𝑜
2
) =

𝑐

𝑛𝑜
− (

𝑉𝑀

𝑛𝑜
2
(𝑛𝑔 − 𝑛𝑜)) − 𝑣 (1 −

1

𝑛𝑜
2
) (2.16) 

where we recognize that 𝑛𝑔 = 𝑛𝑜 + 𝜔
𝜕𝑛

𝜕𝜔
 is the group index. If the medium remains stationary 

while the rest of the gyroscope rotates, then 𝑉𝑀 = −𝑣. In this scenario, Equations 2.15 and 2.16 

reduce to: 

𝑣𝐶𝐶𝑊 =
𝑐

𝑛𝑜
− 𝑣 (1 −

1

𝑛𝑜
2
+

(𝑛𝑔 − 𝑛𝑜)

𝑛𝑜
2

) ≡
𝑐

𝑛𝑜
− 𝑣𝛼𝐿 (2.17) 

𝑣𝐶𝑊 =
𝑐

𝑛𝑜
+ 𝑣 (1 −

1

𝑛𝑜
2
+

(𝑛𝑔 − 𝑛𝑜)

𝑛𝑜
2

) ≡
𝑐

𝑛𝑜
+ 𝑣𝛼𝐿 (2.18) 

where 𝛼𝐿 ≡ 1 −
1

𝑛𝑜
2 +

(𝑛𝑔−𝑛𝑜)

𝑛𝑜
2  is the so-called Laub drag coefficient [12]. The distances over 

which the counter-clockwise and clockwise modes propagate, respectively, are: 

𝐿𝐶𝐶𝑊 = 2𝜋𝑅 + 𝑅𝛺𝑡𝐶𝐶𝑊 = 𝑡𝐶𝐶𝑊𝑉𝐶𝐶𝑊 (2.19) 

𝐿𝐶𝑊 = 2𝜋𝑅 − 𝑅𝛺𝑡𝐶𝑊 = 𝑡𝐶𝑊𝑉𝐶𝑊 (2.20) 

Therefore, the propagation times are: 

𝑡𝐶𝐶𝑊 =
2𝜋𝑅

𝑉𝐶𝐶𝑊 − 𝑅𝛺
=

2𝜋𝑅

(
𝑐
𝑛𝑜

− 𝑣𝛼𝐿) − 𝑅𝛺
 (2.21) 

𝑡𝐶𝑊 =
2𝜋𝑅

𝑉𝐶𝑊 + 𝑅𝛺
=

2𝜋𝑅

(
𝑐
𝑛𝑜

+ 𝑣𝛼𝐿) + 𝑅𝛺
 (2.22) 

so that the time delay is: 

𝛥𝑡 = 𝑡𝐶𝐶𝑊 − 𝑡𝐶𝑊 ≈
4𝜋𝑅2𝛺𝑛𝑜

2(1 − 𝛼𝐿)

𝑐2
=

4𝐴𝛺

𝑐2
∙ 𝑛𝑜

2(1 − 𝛼𝐿) = 𝑛𝑜
2(1 − 𝛼𝐿) ∙ 𝛥𝑡𝑜 (2.23) 
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with a corresponding phase delay of: 

𝛥𝜑 = 𝑛𝑜
2(1 − 𝛼𝐿) ∙ 𝛥𝜑𝑜 = −(𝑛𝑔 − (𝑛𝑜 + 1)) ∙ 𝛥𝜑𝑜 (2.24) 

where 𝛥𝑡𝑜 and 𝛥𝜑𝑜 are the time delay and phase delay, respectively, of the co-moving medium 

case analyzed in Chapter 1. When 𝑛𝑔 ≫ 1, the absolute value of the phase shift, |𝛥𝜑|, approaches 

𝑛𝑔𝛥𝜑𝑜. Thus, the phase sensitivity of an optical gyroscope can be enhanced by circulating a 

medium with a high value of 𝑛𝑔 around the perimeter. Since 𝑛𝑔 > 1 corresponds to a group 

velocity less than the speed of light, this increase in sensitivity can be referred to as “slow light 

enhancement” or “subluminal enhancement”. 

 In the example of the gyroscope with a non-co-moving medium, there were two relevant 

frames of reference: the rest frame of the medium and the rest frame of the optical components. 

This gyroscope therefore measures the relative rotation between these two frames, but cannot be 

used to measure absolute rotation, which is important for many applications in astrophysics, 

geology, and inertial guidance [13]. In order to measure absolute rotation, there must be only one 

frame of reference. This can be achieved by using a resonator. 

 

2.2.2 Fast-Light Enhancement in a Sagnac Resonator with Linear Dispersion 

The main drawback of the slow-light-enhanced interferometer from Section 2.2.1 is that it 

cannot measure absolute rotation. However, this constraint can be overcome by considering the 

Sagnac effect in a resonator, where the longitudinal eigenmode frequencies are modified as a result 

of rotation. We can then create a gyroscope by monitoring the resonant frequencies of two counter-

propagating modes in a resonator as is it rotated, the schematic of which is illustrated in Figure 

2.4. In this system, the clockwise and counter-clockwise resonance frequencies are monitored by 
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detecting and locking to their respective cavity transmission peaks. Two Acousto-Optic 

Modulators (AOMs) – one clockwise and one counter-clockwise – are controlled by Voltage-

Controlled Oscillators (VCOs) so that the AOM output frequencies are always equal to their 

respective cavity resonance frequencies. The beat frequency between the outputs of the two AOMs 

is then measured, from which the rate of rotation is deduced. 

 
Fig. 2.4: Schematic of a gyroscope where the counter-propagating  

resonance frequencies are produced with acousto-optic modulators, and 

are interfered to produce a beat note 

 

In the absence of rotation, the counter-clockwise and clockwise modes both have an 

angular frequency of 𝜔𝑜 = 𝑣𝑃𝐻 (
2𝜋𝑚

𝑃
) where 𝑣𝑃𝐻 =

𝑐

𝑛𝑜
 is the phase velocity, P is the cavity 

perimeter, and m is the mode number which is equal to 
𝑃

𝜆
 where 𝜆 is wavelength. However, if the 
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cavity is rotating at a rate of 𝛺, the phase velocities of the counter-clockwise and clockwise modes, 

𝑣𝐶𝐶𝑊 and 𝑣𝐶𝑊, respectively, are modified so that: 

𝑣𝐶𝐶𝑊 =
𝑣𝑃𝐻 + 𝑅𝛺

1 + (
𝑉𝑃𝐻𝑅𝛺

𝑐2 )
 (2.25) 

𝑣𝐶𝑊 =
𝑣𝑃𝐻 − 𝑅𝛺

1 − (
𝑣𝑃𝐻𝑅𝛺

𝑐2 )
 (2.26) 

Therefore, the (angular) frequency splitting between the two modes is: 

𝛿𝜔𝑜 ≡ 𝜔𝐶𝐶𝑊 − 𝜔𝐶𝑊 = (
2𝜋𝑚

𝑃
) (𝑣𝐶𝐶𝑊 − 𝑣𝐶𝑊) (2.27) 

Plugging Equations 2.25 and 2.26 into Equation 2.27 yields: 

𝛿𝜔𝑜 =
𝑣𝑃𝐻

𝑐𝑛𝑜
(
2𝜋𝑚

𝑃
) (2𝛺𝑅) =

𝜔𝑜

𝑐𝑛𝑜

(2𝛺𝑅) =
𝜔𝑜

𝑐𝑛𝑜
(
4𝛺𝐴

𝑃
) (2.28) 

where 𝐴 = 𝜋𝑅2 is the enclosed area. Once again, the frequency splitting between the counter-

propagating modes is proportional to the rotation rate 𝛺. More generally, if the axis of rotation is 

not perpendicular to the plane of the gyroscope, then: 

𝛿𝜔𝑜 =
𝜔𝑜

𝑐𝑛𝑜
(
4�⃗� ∙ 𝐴 

𝑃
) (2.29) 

where 𝐴  is the area normal vector and �⃗�  is the rotation vector. The rotation rate about a particular 

axis can therefore be deduced by measuring the beat frequency between the counter-propagating 

laser modes.  

In the case of counter-clockwise rotation, as shown in Figure 2.4, the counter-clockwise 

mode is downshifted by 
𝛿𝜔𝑜

2
 while the clockwise mode is upshifted by 

𝛿𝜔𝑜

2
. Thus, in principle, the 

rotation rate 𝛺 can be measured by beating either of these modes with a stable reference laser. 
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However, from an experimental standpoint, it is best to look at the beat frequency between the two 

modes in order to eliminate common-mode effects such as mirror vibrations and thermal 

fluctuations. 

 The above derivation of the frequency splitting in the Sagnac resonator assumed a constant 

index of refraction. The results of this calculation differ drastically when dispersion is considered, 

and provide the theoretical basis for fast-light enhancement in optical interferometry. Once again, 

we consider a medium in which the dispersion relation is Taylor-expanded to first order about a 

central frequency of 𝜔𝑜: 

𝑛(𝜔) ≃ 𝑛(𝜔 = 𝜔𝑜) + 𝛥𝜔 ∙
𝜕𝑛

𝜕𝜔
≡ 𝑛𝑜 + 𝛥𝜔 ∙

𝜕𝑛

𝜕𝜔
 (2.30) 

Without loss of generality, the counter-clockwise and clockwise frequencies in this dispersive 

gyroscope are split by a frequency 𝛿𝜔𝐷, whose value is to be determined in this calculation. The 

counter-clockwise and clockwise resonance frequencies can therefore be written as: 

𝜔𝐶𝐶𝑊 = 𝜔𝑜 −
𝛿𝜔𝐷

2
= 𝑣𝐶𝐶𝑊 (

2𝜋𝑚

𝑃
) (2.31) 

𝜔𝐶𝑊 = 𝜔𝑜 +
𝛿𝜔𝐷

2
= 𝑣𝐶𝑊 (

2𝜋𝑚

𝑃
) (2.32) 

where the phase velocities of the counter-clockwise and clockwise beams are: 

𝑣𝐶𝐶𝑊 =
𝑐

𝑛(𝜔 = 𝜔𝐶𝐶𝑊)
+ 𝑅𝛺 =

𝑐

𝑛𝑜 − (
𝛿𝜔𝐷

2
𝜕𝑛
𝜕𝜔

)
+ 𝑅𝛺 

(2.33) 

𝑣𝐶𝑊 =
𝑐

𝑛(𝜔 = 𝜔𝐶𝑊)
− 𝑅𝛺 =

𝑐

𝑛𝑜 + (
𝛿𝜔𝐷

2
𝜕𝑛
𝜕𝜔

)
− 𝑅𝛺 

(2.34) 

Putting together Equations 2.31 and 2.33 and Equations 2.32 and 2.34 yields: 
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𝛿𝜔𝐷 =
2𝛺𝑅𝜔𝑜

𝑐𝑛𝑜
(

1

𝑛𝑜 + 𝜔𝑜
𝜕𝑛
𝜕𝜔

) =
𝜔𝑜

𝑐𝑛𝑜
(
4𝛺𝐴

𝑃
) ∙

1

𝑛𝑔
= 𝛿𝜔𝑜 ∙

1

𝑛𝑔
 (2.35) 

Therefore, the frequency splitting in the Sagnac resonator is enhanced by a factor of 𝑛𝑔
−1. In the 

subluminal case (|𝑛𝑔| > 1), rotation-induced frequency sensitivity is reduced; in the superluminal 

case (|𝑛𝑔| < 1), rotation-induced frequency sensitivity is increased. Theoretically, a lower bound 

for the value of 𝑛𝑔 does not exist (in fact, 𝑛𝑔 can even be negative, in which case the direction of 

the group velocity is opposite that of the phase velocity). Thus, the sensitivity of a fast-light 

interferometer can, in principle, diverge. However, there does not (and cannot) exist a material in 

which 𝑛𝑔 = 0 over the entire electromagnetic spectrum; higher-order nonlinearities in the 

refractive index will impose an upper limit on the factor of sensitivity enhancement. As will be 

shown in the next section, this upper limit can still be several orders of magnitude greater than 

unity, particularly for “small” values of 𝛿𝜔𝑜. 

 

2.2.3 Fast-Light Enhancement in a Sagnac Resonator with Nonlinear Dispersion 

With linear dispersion, 𝑛(𝜔𝑜 + 𝛥𝜔) = 𝑛(𝜔𝑜) +
𝜕𝑛

𝜕𝜔
𝛥𝜔 ≡ 𝑛𝑜 + 𝑛1𝛥𝜔, so that: 

𝛿𝜔𝐷 =
𝛿𝜔𝑜

𝑛𝑔
=

𝛿𝜔𝑜

𝑛𝑜 + 𝑛1𝜔𝑜
 (2.36) 

However, linear dispersion is realistic only for small deviations about the central frequency 𝜔𝑜. A 

more realistic model of dispersion can be developed by considering the dispersion profile created 

by a two-level absorptive resonance. This two-level model will be validated in Chapter 3, but for 

now we take it for granted: 
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𝑛(𝜔) = 1 −
𝐴𝛤(𝜔 − 𝜔0)

𝛤2 + (𝜔 − 𝜔0)2
 (2.37) 

where 2𝛤 is the full-width half maximum (FWHM) width of the resonance, and 𝐴 is the imaginary 

part of �̃� at the center of that resonance (𝐴 = 𝜒𝐼|𝜔=𝜔0
). This expression can be Taylor-expanded 

about 𝜔0: 

𝑛(𝜔) = 𝑛(𝜔𝑜) +
𝜕𝑛

𝜕𝜔
(𝜔 − 𝜔𝑜) +

1

2

𝜕2𝑛

𝜕𝜔2
(𝜔 − 𝜔𝑜)

2 + +
1

6

𝜕3𝑛

𝜕𝜔3
(𝜔 − 𝜔𝑜)

3 + ⋯ (2.38) 

The second term in Equation 2.37 is odd with respect to 𝜔0, so that 
𝜕2𝑛

𝜕𝜔2 = 0. Taking the next-

highest order of the Taylor expansion into account yields: 

𝑛(𝜔) ≅ 1 + 𝑛1𝛥𝜔 + 𝑛3(𝛥𝜔)3 (2.39) 

where 𝑛1 ≡
𝜕𝑛

𝜕𝜔
 and 𝑛3 ≡

1

6

𝜕3𝑛

𝜕𝜔3. Evaluating the derivatives of Equation 2.37 yields the result that 

𝑛1 = −
𝐴

𝛤
 and 𝑛3 = −

𝑛1

𝛤2. Substituting Equation 2.39 into Equation 2.35 therefore yields a 

frequency splitting of: 

𝛿𝜔𝐷 = [(
4𝛤

𝛿𝜔𝑜
)

2
3⁄

] 𝛿𝜔𝑜 ≡ 𝜂 ∙ 𝛿𝜔𝑜 (2.40) 

The enhancement factor, 𝜂, is evidently nonlinear, and decreases as 𝛿𝜔𝑜 increases. For large values 

of 𝛿𝜔𝑜, 𝜂 approaches unity, meaning that fast-light enhancement vanishes when the detuning is 

far outside the absorptive resonance (for |𝜔 − 𝜔0| ≫ 𝛤). This should make sense because the 

index of refraction far off resonance is roughly constant. 
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2.2.4 Cavity Broadening and Minimum Measurable Rotation Rate in a Fast-Light Sagnac 

Resonator 

We have shown that the presence of a fast-light medium inside a Sagnac resonator can 

significantly enhance the resonance frequency shift, even when higher-order nonlinearities in the 

dispersion profile are considered. However, as will be shown in this section, this enhancement in 

frequency shift does not necessarily lead to an enhancement in gyroscope sensitivity, due to 

concomitant cavity linewidth broadening. 

In the linear dispersion regime, if the roundtrip cavity length 𝐿𝑜 is changed by 𝛥𝐿, then: 

𝐿𝑜 + 𝛥𝐿 = 𝑚𝜆 =
2𝜋𝑚𝑐

[𝜔𝑜 + 𝛥𝜔] ∙ 𝑛(𝜔𝑜 + 𝛥𝜔)
 (2.41) 

where 𝜔𝑜 + 𝛥𝜔 is the new cavity resonance frequency, and 𝑛(𝜔𝑜 + 𝛥𝜔) is the index at this new 

frequency. However, the linewidth of a cavity resonance is enhanced by the same factor, so that: 

𝛾𝐷 =
𝛾𝑜

𝑛𝑔
=

𝛾𝑜

𝑛𝑜 + 𝑛1𝜔𝑜
 (2.42) 

where 𝛾𝑜 and 𝛾𝐷 are the empty cavity and dispersive cavity linewidths, respectively. Similarly, in 

the non-linear dispersion regime, the cavity linewidths have the following relationship: 

𝛾𝐷 =
𝛾𝑜

𝑛𝑜 + 𝑛1𝜔𝑜 + 𝑛3𝜔𝑜(𝛾𝐷)2
=

𝛾𝑜

𝑛𝑔 + 𝑛3𝜔𝑜(𝛾𝐷)2
 (2.43) 

where 𝑛𝑜 ≡ 𝑛(𝜔 = 𝜔𝑜), 𝑛1 ≡
𝜕𝑛

𝜕𝜔
, and 𝑛3 ≡

1

6

𝜕3𝑛

𝜕𝜔3. If 𝑛𝑔 = 0, then: 

𝛾𝐷 =
𝛾𝑜

𝑛3𝜔𝑜(𝛾𝐷)2
= (𝛤2𝛾𝑜)

1
3⁄  (2.44) 

However, for 𝛥𝐿 ≠ 0, 𝑛𝑔 changes as 𝛥𝐿 changes, so that [11]: 

𝛾𝐷 =
𝛾𝑜

𝑛𝑔|
𝜔=𝜔𝑜+𝛥𝜔𝑜

≅
𝜂

3
𝛾𝑜 ≡ 𝜁 ∙ 𝛾𝑜 (2.45) 
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Therefore, the cavity linewidth is broadened by a factor of 𝜁, which is approximately one-third 

that of the frequency shift enhancement. 

 The sensitivity of a Sagnac gyroscope is limited by its ability to resolve frequency-shifted 

peaks. Even though the insertion of a fast-light medium into a Sagnac resonator enhances the 

frequency split between counter-propagating modes, it also broadens these modes. In Figure 

2.5(a), a small rotation rate produces a small shift in frequency. By inserting a fast-light medium 

into the cavity, the splitting between peaks is enhanced, but the peaks themselves are broadened 

by the same factor, as shown in Figure 2.5(b). The ideal scenario is illustrated in Figure 2.5(c), 

where the peaks are split by the same amount as in (b), but where the widths of the peaks remain 

the same as in (a). 

 
Fig. 2.5: (a) Two peaks with small widths are very close to one another; (b) The distance 

between the centers of the peaks is enhanced by a factor of 𝜂, but so is 𝛾, the linewidth; (c) The 

ideal scenario in which the splitting is enhanced by 𝜂 but the linewidth is not. 

 

According to Equation 2.28, the empty-cavity splitting of counter-propagating resonance 

frequencies is: 

𝛿𝜔𝑜 =
𝜔𝑜

𝑐𝑛𝑜
(
4𝛺𝐴

𝑃
) ≡ 𝑆 ∙ 𝛺 (2.46) 

where we define 𝑆 as the “scale factor”. Meanwhile, the minimum measurable frequency shift is: 

𝛿𝜔𝑜(𝑀𝐼𝑁) =
𝛾𝑜

𝑆𝑁𝑅
 (2.47) 
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where 𝛤𝑜 is the empty cavity linewidth and 𝑆𝑁𝑅 is the signal-to-noise ratio. Therefore, the 

minimum measurable rotation rate, 𝛺𝑜(𝑀𝐼𝑁), is: 

𝛺𝑜(𝑀𝐼𝑁) =
𝛿𝜔𝑜(𝑀𝐼𝑁)

𝑆
=

𝛾𝑜

𝑆 ∙ 𝑆𝑁𝑅
 (2.48) 

On the other hand, according to Equation 2.40, the dispersive-cavity splitting of counter-

propagating resonance frequencies is: 

𝛿𝜔𝐷 = 𝜂 ∙ 𝛿𝜔𝑜 = 𝜂 ∙ 𝑆 ∙ 𝛺 (2.49) 

The dispersive cavity linewidth is broadened by a factor of ζ relative to the empty cavity. 

Therefore, the minimum measurable rotation rate in the dispersive cavity, 𝛺𝐷(𝑀𝐼𝑁), is: 

𝛺𝐷(𝑀𝐼𝑁) =
𝛿𝜔𝐷(𝑀𝐼𝑁)

𝑆
=

𝛾𝑜 ∙ 𝜁

𝑆 ∙ 𝑆𝑁𝑅 ∙ 𝜂
= 𝛺𝑜(𝑀𝐼𝑁) ∙ (

𝜁

𝜂
) (2.50) 

ζ ≅
𝜂

3
 according to Equation 2.45, so that the sensitivity of the white-light gyroscope is enhanced 

relative to the empty cavity gyroscope by a factor of approximately three. This slight improvement 

may not be worth the extra complications and sources of drift associated with adding a dispersive 

element. As will be discussed in the next section, a fast-light (or “superluminal”) laser offers a 

promising solution. 
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2.3 Fast Light Sagnac Laser 

The ideal scenario illustrated in Figure 2.5(c) can be realized by inserting into the cavity a 

gain medium in addition to the dispersive element: in other words, by using a fast-light Sagnac 

laser instead of a fast-light Sagnac resonator. 

The minimum-measurable linewidth of a conventional non-dispersive laser is given by: 

𝛿𝜔𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅) =
1

𝜏𝐶
√

𝑃𝑂𝑈𝑇𝜏𝑀

ℏ𝜔𝑜
 (2.51) 

where 𝜏𝐶 is the cavity photon lifetime (which is the inverse of the cavity linewidth 𝛾𝐶), 𝜏𝑀 is the 

measurement time and 𝑃𝑂𝑈𝑇 is the laser output power. For a laser in the coherent state, the number 

of photons, 𝑁, follows a Poisson distribution where the expectation value and standard deviation 

of the number of photons are 〈𝑁〉 and √〈𝑁〉, respectively. The quantity √
𝑃𝑂𝑈𝑇𝜏𝑀

ℏ𝜔𝑜
⁄  is the square 

root of the number of photons observed during the measurement time 𝜏𝑀, and is therefore is equal 

to the uncertainty in the number of photons in the coherent state. Given this expression for the 

minimum-measurable laser linewidth, the expression for the minimum-measurable cavity length 

change is: 

𝛿𝐿𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅) =
𝛿𝜔𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅)

𝜔𝑜
𝐿𝑜 =

𝐿𝑜

𝜔𝑜𝜏𝐶
√

𝑃𝑂𝑈𝑇𝜏𝑀

ℏ𝜔𝑜
 (2.52) 

This (non-dispersive) Sagnac laser is already an improvement on the (non-dispersive) Sagnac 

resonator, because laser linewidths are generally several orders of magnitude smaller than 

resonator linewidths, so that 𝛿𝐿𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑆𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅) is smaller by the same factor. However, 

the contrast between the fast-light Sagnac laser the fast-light Sagnac resonator is even more 

significant, because dispersion of the intra-cavity lasing beam does not affect any of the parameters 
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in Equation 2.51, so that the laser linewidth should remain unchanged in the presence of fast light. 

Therefore, a superluminal laser gyroscope gives the best of all three worlds: enhancement of the 

frequency shift between counter-propagating modes, ultra-narrow laser linewidths, and no 

dispersion-induced linewidth broadening. In Chapter 4, we will explicitly solve the single-mode 

laser equations to verify that the frequency shift of a fast-light Sagnac laser (in the linear dispersion 

limit) is indeed enhanced by a factor of 𝑛𝑔
−1, just as it is with a fast-light Sagnac resonator; for 

now, we will take this result for granted. Therefore, the minimum-measurable cavity length change 

in a fast-light Sagnac laser would be: 

𝛿𝐿𝑀𝐼𝑁(𝐷𝐼𝑆𝑃𝐸𝑅𝑆𝐼𝑉𝐸−𝐿𝐴𝑆𝐸𝑅) = 𝛿𝐿𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅) ∙ (
𝜁

𝜂
)

=
𝛿𝐿𝑀𝐼𝑁(𝐶𝑂𝑁𝑉𝐸𝑁𝑇𝐼𝑂𝑁𝐴𝐿−𝐿𝐴𝑆𝐸𝑅)

𝜂
 

(2.53) 

where 𝜁 = 1 due to the fact that the frequency splitting between counter-propagating modes in a 

fast-light Sagnac laser occurs without concomitant linewidth broadening. This factor of 𝜂 increase 

in sensitivity makes this type of system very promising for future generations of highly-sensitive 

optical interferometers. 
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CHAPTER 3 

ATOM-LIGHT INTERACTION 

 

3.1 Classical Description of Atom-Light Interaction 

Because atoms and photons are quantized, the interaction between them is inherently 

quantum mechanical. Therefore, the true description governing the interaction between light and 

matter requires quantization of both the electromagnetic field and the atom. However, the tools of 

classical mechanics and classical electrodynamics provide a much more intuitive and surprisingly 

accurate description of this process. The goal of this section is to introduce the classical model of 

atom-light interaction, with the goal of strengthening intuition for the subsequent sections, which 

will make use of quantum mechanics. 

 In the classical model, an atom has an equilibrium position located a distance of 𝑥 = 𝑥𝑜 

away from the nucleus, as shown in Figure 3.1. The Taylor expansion of the potential energy 

around this equilibrium position is: 

𝑈(𝑥) = 𝑈(𝑥𝑜) + (𝑥 − 𝑥𝑜) ∙
𝜕𝑈

𝜕𝑥
|
𝑥=𝑥𝑜

+
(𝑥 − 𝑥𝑜)

2

2!
∙
𝜕2𝑈

𝜕𝑥2
|
𝑥=𝑥𝑜

+
(𝑥 − 𝑥𝑜)

3

3!
∙
𝜕3𝑈

𝜕𝑥3
|
𝑥=𝑥𝑜

+
(𝑥 − 𝑥𝑜)

3

4!
∙
𝜕3𝑈

𝜕𝑥3
|
𝑥=𝑥𝑜

+ ⋯ 

(3.1) 

The first term in this Taylor expansion is an arbitrary constant, because potential is a 

relative quantity. Therefore, we can choose to set 𝑈(𝑥𝑜) equal to zero. The second term in the 

expansion is also equal to zero because by definition, the sum of external forces is equal to zero in 

equilibrium: 
𝜕𝑈

𝜕𝑥
|
𝑥=𝑥𝑜

= −𝐹(𝑥 = 𝑥0) = 0. The first nonzero term in the Taylor expansion is the 
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quadratic term. Limiting the expansion to only this quadratic term is equivalent to treating the 

system as an ideal mass-on-a-spring in which the restoring force is: 

𝐹𝑆𝑃𝑅𝐼𝑁𝐺 = −
𝜕𝑈

𝜕𝑥
|
𝑥=𝑥𝑜

≅ −
𝜕

𝜕𝑥
(
(𝑥 − 𝑥𝑜)

2

2
∙
𝜕2𝑈

𝜕𝑥2
|
𝑥=𝑥𝑜

)

= −
𝜕2𝑈

𝜕𝑥2
|
𝑥=𝑥𝑜

∙
𝜕

𝜕𝑥
(
(𝑥 − 𝑥𝑜)

2

2
) = −2

𝜕2𝑈

𝜕𝑥2
|
𝑥=𝑥𝑜

∙ (𝑥 − 𝑥𝑜)

≡ −𝑘(𝑥 − 𝑥𝑜) 

(3.2) 

where the “spring constant” 𝑘 is equal to 2
𝜕2𝑈

𝜕𝑥2|
𝑥=𝑥𝑜

. There is also presumably some damping 

force, which, for the purposes of providing a simple mathematical formulation, is assumed to be 

proportional to the instantaneous velocity: 𝐹𝐷𝐴𝑀𝑃𝐼𝑁𝐺 ≡ −𝜎
𝑑𝑥

𝑑𝑡
. 

 
Fig. 3.1: Damped mass-on-a-spring system in which the electron (-) 

has an equilibrium position of 𝑥 = 𝑥𝑜 away from the nucleus (+) 

 

Now suppose that a classical electromagnetic wave with electric field 𝐸 = −𝐸0cos(𝜔𝑡) 

propagates through this system. The mass of the nucleus is far greater than the mass of the electron, 
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so that the nucleus position is roughly constant (this is called the Born-Oppenheimer 

approximation) while the electron is subjected to a driving force of: 

𝐹𝐷𝑅𝐼𝑉𝐼𝑁𝐺 = −𝑞𝐸 = 𝑞𝐸0cos(𝜔𝑡) (3.3) 

where 𝑞 is the magnitude of the electron charge. The sum of forces exerted on the electron is: 

∑𝐹 =𝐹𝑆𝑃𝑅𝐼𝑁𝐺 + 𝐹𝐷𝐴𝑀𝑃𝐼𝑁𝐺 + 𝐹𝐷𝑅𝐼𝑉𝐼𝑁𝐺 = −𝑘(𝑥 − 𝑥𝑜) − 𝜎
𝑑𝑥

𝑑𝑡
+𝑞𝐸0cos(𝜔𝑡) (3.4) 

 
Fig. 3.2: An oscillating electric field provides the driving force for this  

mass-on-a-spring system, where the nucleus is assumed to be stationary 
 

Re-defining 𝑥 = 0 as the equilibrium position of the spring and letting 𝜎 ≡ 𝑚𝛾, the differential 

equation governing this system simplifies to: 

𝑚 (
𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔𝑜

2𝑥) = 𝑞𝐸0cos(𝜔𝑡) (3.5) 

where 𝑚 is the electron mass and 𝜔𝑜 ≡ √𝑘 𝑚⁄  is the resonant frequency of the simple harmonic 

oscillator. This differential equation is identical to that of the canonical damped harmonic 
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oscillator with a sinusoidal driving force. The solutions to this class of differential equations take 

on the following form: 

𝑥(𝑡) = �̃�(𝑡) = 𝑥𝑜𝑒
−𝑖𝜔𝑡 (3.6) 

where the tilde above the 𝑥 indicates that it is a complex function. Inserting Equation 3.6 into 

Equation 3.5 yields: 

𝑚(−𝜔2𝑥𝑜𝑒
−𝑖𝜔𝑡 − 𝑖𝛾𝜔𝑥𝑜𝑒

−𝑖𝜔𝑡 + 𝜔𝑜
2𝑥𝑜𝑒

−𝑖𝜔𝑡) = 𝑞𝐸0𝑒
−𝑖𝜔𝑡 (3.7) 

Therefore: 

𝑥𝑜 =

𝑞
𝑚⁄

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸𝑜 (3.8) 

Because �̃�(𝑡) is complex, it has an amplitude and a phase. The phase represents the lag of the 

electron response relative to the applied field, and is equal to: 

𝜃𝐿𝐴𝐺 = 𝑡𝑎𝑛−1 (
𝐼𝑚[�̃�(𝑡)]

𝑅𝑒[�̃�(𝑡)]
) = 𝑡𝑎𝑛−1 (

𝛾𝜔

𝜔𝑜
2 − 𝜔2

) (3.9) 

The dipole moment of a single atom is equal to the electron charge multiplied by the separation 

between the electron and nucleus: 

𝑝(𝑡) = 𝑞�̃�(𝑡) =

𝑞2

𝑚⁄

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸𝑜𝑒
−𝑖𝜔𝑡 (3.10) 

If there are N atoms per unit volume, then the bulk polarization of the medium is: 

�̃�(𝑡) = 𝑁𝑝(𝑡) =

𝑁𝑞2

𝑚⁄

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

�̃�(𝑡) (3.11) 

In general, the complex material susceptibility, χ̃, can be defined through the following relation 

[14]: 

�̃� ≡ (𝜀𝑜χ̃)�̃� (3.12) 
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so that: 

χ̃ =

𝑁𝑞2

𝜀𝑜𝑚
⁄

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

 (3.13) 

The amplitude and phase of χ̃ represent the magnitude and lag, respectively, between the applied 

field and the polarization of the medium. Additionally, the permittivity, 𝜀̃, can be defined as: 

𝜀̃ = 𝜀𝑜(1 + χ̃) = 𝜀𝑜 (1 +

𝑁𝑞2

𝜀𝑜𝑚
⁄

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

) (3.14) 

This permittivity can then be substituted into the wave equation: 

∇2𝐸 = 𝜀̃𝜇𝑜

𝜕2𝐸

𝜕𝑡2
 (3.15) 

Equation 3.15 admits plane wave solutions of the form: 

𝐸(𝑧, 𝑡) = 𝐸𝑜𝑒
𝑖(�̃�𝑧−𝜔𝑡) (3.16) 

where �̃� is the complex wave number: �̃� = √𝜀̃𝜇𝑜𝜔 = 𝑅𝑒[�̃�] + 𝑖 ∙ 𝐼𝑚[�̃�] ≡ 𝑘𝑅 + 𝑖𝑘𝐼. Equation 

3.16 therefore becomes: 

�̃�(𝑧, 𝑡) = 𝐸𝑜𝑒
−𝑘𝐼𝑧𝑒𝑖(𝑘𝑅𝑧−𝜔𝑡) (3.17) 

The imaginary part of �̃� evidently represents attenuation of the electric field, which is dampened 

to a factor of 1 𝑒⁄  its initial value after propagating a distance of 1 𝑘𝐼⁄ . The energy absorption 

coefficient, 𝛼, is equal to 2𝑘𝐼, so that the energy density (which is proportional to the square of the 

electric field) is damped to a factor of 1 𝑒⁄  after propagating a distance of 1 𝛼⁄ . 

The real part of �̃� is inversely proportional to the wavelength and therefore is related to the 

refractive index, which is equal to 
𝑐𝑘𝑅

𝜔
. If (𝑅𝑒[𝜀̃] − 𝜀𝑜) ≪ 1, then: 
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�̃� = √𝜀̃𝜇𝑜𝜔 ≅
𝜔

𝑐
[1 + (

𝑁𝑞2

2𝑚𝜀𝑜
) (

1

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

)] (3.18) 

Therefore, the index and the absorption coefficient, respectively, are: 

𝑛 =
𝑐𝑘𝑅

𝜔
= 1 + (

𝑁𝑞2

2𝑚𝜀𝑜
)

(𝜔𝑜
2 − 𝜔2)

(𝜔𝑜
2 − 𝜔2)2 + (𝛾𝜔)2

 (3.19) 

𝛼 = 2𝑘𝐼 = (
𝑁𝑞2

𝑚𝑐𝜀𝑜
)

(𝛾𝜔)

(𝜔𝑜
2 − 𝜔2)2 + (𝛾𝜔)2

 (3.20) 

Figure 3.3 plots these two quantities together. 

 
Fig. 3.3: The refractive index (minus one) and the (negative) coefficient of absorption  

plotted together. Near resonance, absorption increases while the slope of the refractive  

index is at its maximum value. 

 

The dispersion profile appears to be roughly proportional to the derivative of the absorption 

profile. This is not precisely true – at the most fundamental level, they (along with the real and 

imaginary parts of any complex function) are related by the so-called Kramers-Kronig relations, 

which will be derived in the next section. 
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3.2 The Kramers-Kronig Relations 

Figure 3.3 shows that on resonance, atomic absorption of the electromagnetic wave is 

maximized while the slope of the refractive index is also maximized. It may appear that the 

index is proportional to the derivative of the coefficient of absorption, but in fact they are related 

by the so-called Kramers-Kronig relations, which arise from the causal relationship between the 

applied field and the atomic response [15,16,17]. In their most general form, the Kramers-Kronig 

relations describe the relationship between the real and imaginary parts of any complex function 

obeying causality. This relationship is particularly useful in the field of optics, because atomic 

response to an applied field is most conveniently described as a complex function with an 

amplitude spectrum and a phase spectrum. The derivation of the Kramers-Kronig relations 

begins with the definition of a time-dependent material polarization: 

�̃�(𝑡) = 𝜀𝑜 ∫ �̃�(𝑡′)χ̃(𝑡 − 𝑡′)𝑑𝑡′
∞

−∞

 (3.21) 

Causality requires that if the electric field is turned on at 𝑡 = 0, the polarization must be zero at 

all times before 𝑡 = 0. Therefore χ̃(𝑡) = 0 for 𝑡 < 0, or equivalently, χ̃(𝑡 − 𝑡′) = 0 for 𝑡 < 𝑡′. 

Therefore, χ̃(𝑡) can be expressed as: 

χ̃(𝑡) ⟶ 𝛩(𝑡)χ̃(𝑡) (3.22) 

where 𝛩(𝑡) is the “step function” in which 𝛩(𝑡 < 0) = 0 and 𝛩(𝑡 ≥ 0) = 1. Therefore, χ̃(𝜔), 

the Fourier transform of χ̃(𝑡), can be expressed as: 
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χ̃(𝜔) = ℱ{𝛩(𝑡)χ̃(𝑡)}

= ∫ 𝛩(𝑡)χ̃(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 =
∞

−∞

∫ 𝛩(𝑡) [∫ χ̃(𝜔′)𝑒−𝑖𝜔′𝑡𝑑𝜔′
∞

−∞

] 𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

= ∫ χ̃(𝜔′)𝑑𝜔′∫ 𝛩(𝑡)𝑒𝑖(𝜔−𝜔′)𝑡𝑑𝑡
∞

−∞

∞

−∞

 

(3.23) 

The second integral in this term is the Fourier transform of the step function: 

∫ 𝛩(𝑡)𝑒𝑖(𝜔−𝜔′)𝑡𝑑𝑡
∞

−∞

= ℱ{𝛩(𝑡)} =
1

2
𝛿(𝜔) +

𝑖

2𝜋𝜔
 (3.24) 

where 𝛿(𝜔) is the Dirac delta function which is equal to zero everywhere except at 𝜔 = 0, and 

has a total area of ∫ 𝛿(𝜔)𝑑𝜔
∞

−∞
= 1. Equations 3.23 and 3.24 therefore yield: 

χ̃(𝜔) =
1

2
∫ χ̃(𝜔′)𝛿(𝜔 − 𝜔′)𝑑𝜔′

∞

−∞

+
𝑖

2𝜋
∫

χ̃(𝜔′)

𝜔 − 𝜔′
𝑑𝜔′

∞

−∞

=
𝑖

𝜋
∫

χ̃(𝜔′)

𝜔 − 𝜔′
𝑑𝜔′

∞

−∞

 (3.25) 

This gives the relationship between 𝜒𝑅(𝜔) and 𝜒𝐼(𝜔), the real and imaginary parts of χ̃(𝜔). 

𝜒𝑅(𝜔) =
2

𝜋
∫

𝜔′𝜒𝐼(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′

∞

0

 (3.26) 

𝜒𝐼(𝜔) = −
2𝜔

𝜋
∫

𝜒𝑅(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′

∞

0

 (3.27) 

Equations 3.26 and 3.27 are the Kramers-Kronig relations, which elucidates the 

relationship between 𝜒𝑅(𝜔) and 𝜒𝐼(𝜔). This is a powerful result because if we know 𝜒𝑅(𝜔), we 

can then calculate 𝜒𝐼(𝜔), and vice versa. It should be evident at this point that the relationship 

between these two quantities is of tremendous importance in quantifying, understanding, 

predicting, and designing various dispersion phenomena which are central to this thesis. 
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3.3 Semiclassical Description of Atom-Light Interaction 

In Section 3.1, we introduced the classical model of atom-light interaction, which led to 

the calculation of the dispersion and absorption profiles of an atomic medium. This section 

introduces the semiclassical model of this interaction in which the electromagnetic field is still 

modeled classically, but the atom is now modeled quantum mechanically. 

 

3.3.1 Hamiltonian of a Two-Level Atom 

The hydrogen atom is an ideal system to model mathematically because it is a two-body 

system and therefore its solutions can be expressed in closed form. Furthermore, for reasons that 

will soon be discussed in greater detail, the hydrogen atom is a good approximation for all alkali 

atoms which are utilized exclusively in our laboratory and in all the experiments covered in this 

thesis. A hydrogen atom has one electron for which the Hamiltonian can be written as [18]: 

�̂� =
�̂�2

2𝑚
+ �̂�(𝑟) =

�̂�2

2𝑚
+

𝑞

4𝜋𝜀𝑜�̂�2
 (3.28) 

where �̂� = −𝑖ℏ∇̂ is the momentum operator, 𝑚 is the electron mass, 𝑞 is the elementary charge, 

and 𝑟 is the distance from the electron to the nuclear proton. The eigenfunctions of this 

Hamiltonian are the hydrogen wavefunctions [19]: 

𝜓𝑛𝑙𝑚 = √(
2

𝑛𝑎
)
3 (𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]3
𝑌𝑙

𝑚(𝜃, 𝜑) ∙ 𝑒−𝑟
𝑛𝑎⁄ (

2𝑟

𝑛𝑎
)
𝑙

[𝐿𝑛−𝑙−1
2𝑙+1 (2𝑟

𝑛𝑎⁄ )] (3.29) 

where the quantity under the square root is the normalization constant, 𝑌𝑙
𝑚(𝜃, 𝜑) are the spherical 

harmonics, and 𝐿𝑛−𝑙−1
2𝑙+1 (2𝑟

𝑛𝑎⁄ ) are the associated Laguerre polynomials. For even values of 𝑙, the 

hydrogen wavefunctions are even with respect to parity; for odd values of 𝑙, the hydrogen 
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wavefunctions are odd with respect to parity. The probability distribution of the electron position 

is equal to |𝜓𝑛𝑙𝑚|2. Images of the hydrogen wavefunctions are shown in Figure 3.4. 

 
Fig. 3.4: The hydrogen wavefunctions, 𝜓𝑛𝑙𝑚, for values of 𝑛 ≤ 5. 𝑙  

can have values from 0 to (𝑛 − 1), and 𝑚 can have values from −𝑙 to 𝑙. 
Red and blue represent positive and negative values, respectively. 

 

The “hydrogenic potential”, 𝑉(𝑟) ∝
𝑞

4𝜋𝜀𝑜𝑟2, is a good approximation for the potential of the 

valence electron in any alkali atom, because an alkali atom can be treated roughly as a two-body 

problem where one “body” is the valence electron while the other “body” is the nucleus which is 

screened to some extent by the cloud of all other tightly-bound electrons. Accordingly, the 

hydrogen wavefunctions serve as a good approximation for all alkali wavefunctions. 

If we now define 𝑝𝑜⃗⃗⃗⃗  as the vector pointing from the nucleus to the valence electron, then 

the atomic dipole moment can be written as 𝑑𝑜
⃗⃗⃗⃗ = −𝑞𝑝𝑜⃗⃗⃗⃗ . In the presence of an electric �⃗� , the 

dipole-field interaction energy is 𝐸𝐼 = 𝑑𝑜
⃗⃗⃗⃗ ∙ �⃗� .  
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In its most general form, the electric field of an electromagnetic wave can be written as 

�⃗� (𝑟 , 𝑡) = 𝜀̂𝐸𝑜𝑐𝑜𝑠(�⃗� ∙ 𝑟 − 𝜔𝑡 − 𝜑) where 𝜀̂ is the unit vector in the direction of the electric field, 

�⃗�  is the wavevector (where |�⃗� | =
2𝜋

𝜆
), and 𝜔 is the angular frequency. Therefore, the interaction 

energy of this electric dipole in the presence of an oscillating electric field, 𝐸𝐼, can be written as: 

𝐸𝐼 = 𝑑𝑜
⃗⃗⃗⃗ ∙ �⃗� = (−𝑞𝑝𝑜⃗⃗⃗⃗ ) ∙ (𝜀̂𝐸𝑜𝑐𝑜𝑠(�⃗� ∙ 𝑟 − 𝜔𝑡 − 𝜑)) (3.30) 

Since optical wavelengths are on the order of 10-6 m while atomic radii are on the order of 

10-10 m, an atom in the presence of optical-wavelength electromagnetic radiation sees a spatially-

uniform field which oscillates sinusoidally in time. Without loss of generality, if 𝑟 = 0, 𝜑 = 0, 

𝜀̂ = �̂� and �⃗� = 𝑘�̂�, then the electric field seen by the atom is  �⃗� (𝑡) = �̂�𝐸𝑜𝑐𝑜𝑠(𝜔𝑡). The interaction 

energy is then simplified to: 

𝐸𝐼 = 𝑑𝑜
⃗⃗⃗⃗ ∙ �⃗� = (−𝑞𝑝𝑜⃗⃗⃗⃗ ) ∙ (�̂�𝐸𝑜𝑐𝑜𝑠(𝜔𝑡)) = −(𝑝𝑜⃗⃗⃗⃗ ∙ �̂�)𝑞𝐸𝑜𝑐𝑜𝑠(𝜔𝑡) (3.31) 

If 𝑝𝑜 is the projection of the dipole moment onto the x-axis, Equation 3.31 becomes: 

𝐸𝐼 = −(𝑝𝑜⃗⃗⃗⃗ ∙ �̂�)𝑞𝐸𝑜𝑐𝑜𝑠(𝜔𝑡) = −|𝑝𝑜|𝑞𝐸𝑜𝑐𝑜𝑠(𝜔𝑡) (3.32) 

Therefore, the Hamiltonian is equal to: 

�̂� = [
�̂�2

2𝑚
+

𝑞

4𝜋𝜀𝑜�̂�2
] + [−𝑞𝑝�̂�𝐸𝑜𝑐𝑜𝑠(𝜔𝑡)] ≡ �̂�𝑜 + �̂�𝐼 (3.33) 

where 𝑝�̂� is the dipole operator, and �̂�𝑜 and �̂�𝐼 are referred to as the “unperturbed” and 

“interaction” terms of the Hamiltonian, respectively. 

 

3.3.2 Dirac Notation of the Two-Level Atom 

In certain scenarios, an atom can be simply modeled as a two-level system with a complex 

wavefunction |𝜓(𝑡)〉: 
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|𝜓(𝑡)〉 = 𝑐1(𝑡)|𝜓1〉 + 𝑐2(𝑡)|𝜓2〉 (3.34) 

where |𝜓1〉 and |𝜓2〉 are energy eigenstates with energies of 𝐸1 = ℏ𝜔1 and 𝐸2 = ℏ𝜔2, 

respectively, while 𝑐1(𝑡) and 𝑐2(𝑡) are time-varying complex numbers, constrained under the 

normalization condition: 

⟨𝜓|𝜓⟩ = |𝑐1(𝑡)|
2 + |𝑐2(𝑡)|

2 = 1 (3.35) 

The basis of a two-level system consists of two eigenfunctions, |𝜓1〉 and |𝜓2〉. In matrix notation, 

the electron wavefunction can therefore be represented in the “|𝜓1〉, |𝜓2〉” basis as: 

|𝜓(𝑡)〉 = [
𝑐1(𝑡)

𝑐2(𝑡)
] (3.36) 

The Schrödinger equation [18] governs the dynamics of the electron wavefunction: 

𝑖ℏ
𝜕|𝜓〉

𝜕𝑡
= �̂�|𝜓〉 = (�̂�𝑜 + �̂�𝐼)|𝜓〉 (3.37) 

In matrix notation, Equation 3.37 would be written as: 

𝑖ℏ
𝜕

𝜕𝑡
[
𝑐1(𝑡)

𝑐2(𝑡)
] = [

⟨𝜓1|(�̂�𝑜 + �̂�𝐼)|𝜓1⟩ ⟨𝜓2|(�̂�𝑜 + �̂�𝐼)|𝜓1⟩

⟨𝜓1|(�̂�𝑜 + �̂�𝐼)|𝜓2⟩ ⟨𝜓2|(�̂�𝑜 + �̂�𝐼)|𝜓2⟩
] [

𝑐1(𝑡)

𝑐2(𝑡)
] (3.38) 

where |𝜓1〉 and |𝜓2〉 are the energy eigenstates of the unperturbed Hamiltonian, so that 

⟨𝜓𝑚|(�̂�𝑜)|𝜓𝑛⟩ = ℏω𝑚𝛿𝑚𝑛. As mentioned earlier, these energy eigenstates are either strictly even 

(for even values of the quantum number 𝑙) or strictly odd (for odd values of the quantum number 

𝑙) with respect to 𝑟 = 0, the position of the nucleus. Because the �̂� operator is odd with respect to 

𝑟 = 0, the inner products ⟨𝜓1|(�̂�)|𝜓1⟩ and ⟨𝜓2|(�̂�)|𝜓2⟩ are both equal to zero. On the other hand, 

if 𝑙(|𝜓1〉) is even and 𝑙(|𝜓2〉) is odd (or vice versa), then the inner products ⟨𝜓1|(�̂�)|𝜓2⟩ and 

⟨𝜓2|(�̂�)|𝜓1⟩ are non-zero. In this case, the Hamiltonian in matrix form would be: 
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�̂� = �̂�𝑜 + �̂�𝐼 = [
ℏω1 0
0 ℏω2

] + [
0 𝑞𝑝𝑜𝐸𝑜𝑐𝑜𝑠(𝜔𝑡)

𝑞𝑝𝑜𝐸𝑜𝑐𝑜𝑠(𝜔𝑡) 0
]

= [
ℏω1 𝑞𝑝𝑜𝐸𝑜𝑐𝑜𝑠(𝜔𝑡)

𝑞𝑝𝑜𝐸𝑜𝑐𝑜𝑠(𝜔𝑡) ℏω2
] 

(3.39) 

Letting 𝛺𝑜 ≡
𝑞𝑝𝑜𝐸𝑜

ℏ
, the Hamiltonian simplifies to: 

�̂� = ℏ [
ω1 𝛺𝑜𝑐𝑜𝑠(𝜔𝑡)

𝛺𝑜𝑐𝑜𝑠(𝜔𝑡) ω2
] = ℏ [

ω1

𝛺𝑜

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

𝛺𝑜

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) ω2

] (3.40) 

3.3.3 The Rotating Wave Approximation 

The Rotating Wave Approximation (RWA) is now made [20], which eliminates highly-

detuned terms from the Hamiltonian. This can be done because the highly-detuned terms have very 

weak coupling to the atomic energy levels and therefore contribute a negligible amount to the 

solution. The RWA simplifies the Hamiltonian to: 

�̂� ≅ ℏ [
ω1

𝛺𝑜

2
𝑒𝑖𝜔𝑡

𝛺𝑜

2
𝑒−𝑖𝜔𝑡 ω2

] (3.41) 

The RWA is a powerful tool because it enables the Hamiltonian to be made time-independent 

through the Rotating Wave Transformation (RWT). The first step of the RWT is to define a 

rotation operator (or Q-matrix) as follows: 

�̂� ≡ [𝑒
𝑖𝜃1𝑡 0
0 𝑒𝑖𝜃2𝑡

] (3.42) 

Now, we let the “rotated state” |�̃�〉 be defined as: 

|�̃�〉 ≡ �̂�|𝜓〉 = [𝑒
𝑖𝜃1𝑡 0
0 𝑒𝑖𝜃2𝑡

] [
𝑐1

𝑐2
] = [

𝑐1𝑒
𝑖𝜃1𝑡

𝑐2𝑒
𝑖𝜃2𝑡

] ≡ [
𝑐1̃

𝑐2̃
] (3.43) 

Therefore: 
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𝜕|�̃�〉

𝜕𝑡
= [

𝑖𝜃1𝑐1𝑒
𝑖𝜃1𝑡

𝑖𝜃2𝑐2𝑒
𝑖𝜃2𝑡

] = [
𝑖𝜃1 0
0 𝑖𝜃2

] [
𝑐1𝑒

𝑖𝜃1𝑡

𝑐2𝑒
𝑖𝜃2𝑡

] ≡ �̂�|�̃�〉 (3.44) 

where �̂� ≡ [
𝑖𝜃1 0
0 𝑖𝜃2

]. Applying the product rule for derivatives yields: 

𝜕|�̃�〉

𝜕𝑡
=

𝜕

𝜕𝑡
[�̂�|𝜓〉] =

𝜕�̂�

𝜕𝑡
|𝜓〉 + �̂�

𝜕|𝜓〉

𝜕𝑡
= �̂��̂�|𝜓〉 + �̂�

𝜕|𝜓〉

𝜕𝑡
 (3.45) 

Putting together Equations 3.37 and 3.45 gives: 

𝜕|�̃�〉

𝜕𝑡
= �̂��̂�|𝜓〉 + �̂�

𝜕|𝜓〉

𝜕𝑡
= �̂��̂�|𝜓〉 −

𝑖

ℏ
�̂��̂�|𝜓〉 (3.46) 

Since �̂�−1�̂� = 𝐼, where 𝐼 is the identity matrix, Equation 3.46 can be rewritten as: 

𝜕|�̃�〉

𝜕𝑡
= �̂��̂�|𝜓〉 −

𝑖

ℏ
�̂��̂��̂�−1�̂�|𝜓〉 = �̂�|�̃�〉 −

𝑖

ℏ
�̂��̂��̂�−1|�̃�〉 = [�̂� −

𝑖

ℏ
�̂��̂��̂�−1] |�̃�〉 (3.47) 

Therefore, the Schrödinger equation in the “rotating frame” is: 

𝑖ℏ
𝜕|�̃�〉

𝜕𝑡
= [𝑖ℏ�̂� + �̂��̂��̂�−1]|�̃�〉 ≡ �̂̃�|�̃�〉 (3.48) 

where �̂̃� is the “Rotating Wave Hamiltonian”, which can be written in matrix form as: 

�̂̃� = ℏ [
(𝜔1 − 𝜃1)

𝛺𝑜

2
𝑒𝑖(𝜃1−𝜃2+𝜔)𝑡

𝛺𝑜

2
𝑒−𝑖(𝜃1−𝜃2+𝜔)𝑡 (𝜔2 − 𝜃2)

] (3.49) 

Letting 𝜔 = 𝜃2 − 𝜃1 gets rid of the time-dependence, so that: 

�̂̃� = ℏ [
(𝜔1 − 𝜃1)

𝛺𝑜

2
𝛺𝑜

2
(𝜔2 − 𝜃2)

] (3.50) 

Setting 𝜃1 = 𝜔1, 𝜃2 = 𝜔1 + 𝜔, and defining 𝛿 ≡ 𝜔 − (𝜔2 − 𝜔1), the Rotating Wave 

Hamiltonian is simplified to: 
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�̂̃� = ℏ [
0

𝛺𝑜

2
𝛺𝑜

2
−𝛿

] (3.51) 

 
Fig. 3.5: 𝛿 is defined as 𝜔 − (𝜔2 − 𝜔1), which is the detuning between 

the electromagnetic frequency and the transition frequency 

 

Combining Equations 3.43, 3.48 and 3.51 yields: 

𝑖ℏ
𝑑

𝑑𝑡
[
𝑐1̃

𝑐2̃
] = ℏ [

0
𝛺𝑜

2
𝛺𝑜

2
−𝛿

] [
𝑐1̃

𝑐2̃
] (3.52) 

This results in two equations: 

𝑑𝑐1̃

𝑑𝑡
= −𝑖

𝛺𝑜

2
𝑐2̃ (3.53) 

𝑑𝑐2̃

𝑑𝑡
= 𝑖 [𝛿𝑐2̃ −

𝛺𝑜

2
𝑐1̃] (3.54) 

The time derivative of Equation 3.54 is: 

𝑑2𝑐2̃

𝑑𝑡2
= 𝑖 [𝛿

𝑑𝑐2̃

𝑑𝑡
−

𝛺𝑜

2

𝑑𝑐1̃

𝑑𝑡
] = 𝑖 [𝛿

𝑑𝑐2̃

𝑑𝑡
−

𝛺𝑜

2
(−𝑖

𝛺𝑜

2
𝑐2̃)] = 𝑖𝛿

𝑑𝑐2̃

𝑑𝑡
−

𝛺𝑜
2

4
𝑐2̃ (3.55) 
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This second-order differential equation in 𝑐2̃ takes the same form as a harmonic oscillator and 

therefore admits solutions of the following form: 

𝑐2̃(𝑡) = 𝐴𝑒𝑖𝛺1𝑡 + 𝐵𝑒−𝑖𝛺2𝑡 (3.56) 

Plugging Equation 3.56 into Equation 3.55 results in: 

−[𝛺1
2𝐴𝑒𝑖𝛺1𝑡 + 𝛺2

2𝐵𝑒𝑖𝛺2𝑡] = 𝑖𝛿[𝑖𝛺1𝐴𝑒𝑖𝛺1𝑡 − 𝑖𝛺2𝐵𝑒𝑖𝛺2𝑡] −
𝛺𝑜

2

4
[𝐴𝑒𝑖𝛺1𝑡 + 𝐵𝑒𝑖𝛺2𝑡] (3.57) 

This results in two quadratic equations: 

𝛺1
2 − 𝛿𝛺1 −

𝛺𝑜
2

4
= 0 (3.58) 

𝛺2
2 + 𝛿𝛺2 −

𝛺𝑜
2

4
= 0 (3.59) 

Therefore: 

𝛺1 =
1

2
[𝛿 ± √𝛿2 + 𝛺𝑜

2] (3.60) 

𝛺2 =
1

2
[−𝛿 ± √𝛿2 + 𝛺𝑜

2] (3.61) 

If the system starts out in thermal equilibrium and ℏ(𝜔2 − 𝜔1) ≫ 𝑘𝐵𝑇, then 𝑐1̃(𝑡 = 0) = 1 and 

𝑐2̃(𝑡 = 0) = 0, so that 𝐴 = −𝐵. Therefore: 

𝑐2̃(𝑡) = 𝐴 (𝑒
𝑖
2
[𝛿±√𝛿2+𝛺𝑜

2]𝑡
− 𝑒

−
𝑖
2
[−𝛿±√𝛿2+𝛺𝑜

2]𝑡
) = 𝑖𝐴𝑒𝑖𝛿𝑡 sin

(

 
√𝛿2 + 𝛺𝑜

2

2
𝑡

)

  (3.62) 

Substituting Equation 3.62 into Equation 3.53 yields: 

𝑐1̃(𝑡) = 𝐴𝑒𝑖𝛿𝑡 cos

(

 
√𝛿2 + 𝛺𝑜

2

2
𝑡

)

  (3.63) 
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Normalization requires that |𝑐1̃
2| + |𝑐2̃

2| = 1, so that 𝐴 =
1

√2
. Therefore: 

𝑐1(𝑡) = 𝑐1̃𝑒
−𝑖𝜃1𝑡 = 𝑐1̃𝑒

−𝑖𝜔1𝑡 =
𝑒−𝑖(𝜔1−𝛿)𝑡

√2
cos

(

 
√𝛿2 + 𝛺𝑜

2

2
𝑡

)

  (3.64) 

𝑐2(𝑡) = 𝑐2̃𝑒
−𝑖𝜃2𝑡 = 𝑐2̃𝑒

−𝑖(𝜔1+𝜔)𝑡 = 𝑖
𝑒𝑖𝜔2𝑡

√2
sin

(

 
√𝛿2 + 𝛺𝑜

2

2
𝑡

)

  (3.65) 

The time evolution of |𝜓(𝑡)〉 has finally been solved. The phases of coefficients 𝑐1 and 𝑐2 oscillate 

rapidly (at optical frequencies) but their amplitudes oscillate much more slowly, with a frequency 

of 𝛺 ≡
√𝛺𝑜

2+𝛿2

2
. This is the so-called Rabi frequency. The percentage of atoms in eigenstates |𝜓1〉 

and |𝜓2〉, respectively, are: 

|𝑐1|
2 = cos2(𝛺𝑡) (3.66) 

|𝑐2|
2 = sin2(𝛺𝑡) (3.67) 

Although the semiclassical two-level approach has been instructive, it is important to 

remember that the electric field has been treated as a classical entity. The most rigorous treatment 

governing the interaction between an electromagnetic wave and a two-level atomic system requires 

the quantization of both the atom and the field. The fully-quantized approach to solving this system 

takes into account the interaction between the atom and the vacuum and thermal photons, which 

results in “spontaneous” decay. This fully-quantized approach leads to the Wigner-Weisskopf 

theory [21] from which rates of spontaneous emission can be calculated. 

 The second deficiency in the semiclassical two-level model arises in a system where there 

is a statistical ensemble of atoms, rather than a single atom. This approach does not mathematically 
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distinguish between a pure state (where every atom is in the same state or the same superposition 

of states) and a mixed state (where not every atom is in the same superposition of states). The 

distinction between these two scenarios is illustrated in Figure 3.6. 

 
Fig. 3.6: (a): Pure state. All six atoms are in a 50/50 superposition of “red” and “blue”  

(or |𝜓1〉 and |𝜓2〉 in the case of the two-level atom); (b) Mixed state. Three atoms  

are in state |𝜓1〉 while the other three atoms are in state |𝜓2〉 
 

3.3.4 The Density Matrix Approach 

The density matrix approach solves both deficiencies of the semiclassical approach by 

providing a mathematical framework in which the coherent decay of atomic states can be treated 

as a phenomenological effect (without needing to explicitly calculate these rates from first 

principles), and in which pure and mixed states can be distinguished. The density matrix is defined 

as the following outer product: 

�̂� ≡ [
|𝑐1|

2 𝑐1𝑐2
∗

𝑐2𝑐1
∗ |𝑐2|

2 ] ≡ [
𝜌11 𝜌12

𝜌21 𝜌22
] ≡

1

𝑁
∑|𝜓𝑚〉⟨𝜓𝑚|

𝑁

𝑚=1

 (3.68) 

where 𝑐1 and 𝑐2 are the coefficients of |𝜓1〉 and |𝜓2〉, respectively. The summation is taken over 

each atom, where 𝑁 is the number of atoms. In a two-level system, the density matrix is a 2×2 
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matrix, where the diagonal terms represent the average populations of the energy levels and the 

off-diagonal terms represent the average phase coherence between the two states. The time 

derivative of the density matrix is: 

𝜕�̂�

𝜕𝑡
=

1

𝑁
∑ (

𝜕|𝜓𝑚〉

𝜕𝑡
) ⟨𝜓𝑚| +

𝑁

𝑚=1

|𝜓𝑚〉 (
𝜕⟨𝜓𝑚|

𝜕𝑡
)

= −
𝑖

ℏ
∑{�̂�|𝜓𝑚〉⟨𝜓𝑚| − |𝜓𝑚〉⟨𝜓𝑚|�̂�∗}

𝑁

𝑚=1

= −
𝑖

ℏ
{�̂��̂� − �̂��̂�}

= −
𝑖

ℏ
[�̂�, �̂�] 

(3.69) 

where [�̂�, �̂�] is the commutator of the Hamiltonian and the density matrix. Equation 3.69 is called 

the Liouville equation [22], which governs the time evolution of a mixed state. The Liouville 

equation is equivalent to the Schrödinger equation in the density matrix formalism. 

Decay terms are treated phenomenologically by introducing a decay matrix, �̂�𝐷𝐸𝐶𝐴𝑌, which 

keeps track of the decay rate from state |𝑗〉 to state |𝑘〉, for all |𝑗〉 and |𝑘〉. The Liouville equation 

with phenomenological decay terms considered is therefore: 

𝜕�̂�

𝜕𝑡
= �̇̂� = −

𝑖

ℏ
[�̂�, �̂�] + �̂�𝐷𝐸𝐶𝐴𝑌 (3.70) 

It is once again favorable to solve this system in the rotating-wave reference frame, which makes 

the Hamiltonian time-independent. Since |𝜓�̃�〉 ≡ �̂�|𝜓𝑚〉, then: 

|𝜓�̃�〉⟨𝜓�̃�| = �̂�|𝜓𝑚〉⟨𝜓𝑚|�̂�∗ = �̂�𝜌𝑚𝑚�̂�∗ ≡ 𝜌𝑚�̃� (3.71) 

The terms in the density matrix are averaged over all N atoms, so that: 

�̂̃� ≡ [
𝜌11̃ 𝜌12̃

𝜌21̃ 𝜌22̃
] = [

𝜌11 𝜌12𝑒
−𝑖𝜔𝑡

𝜌21𝑒
𝑖𝜔𝑡 𝜌22

] (3.72) 
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It can be shown [23,24] that the equation of motion for this rotated density matrix (the optical 

Bloch equation) takes on the same form as the non-rotated density matrix, so that: 

�̇̂̃� = −
𝑖

ℏ
[�̂̃�, �̂̃�] + �̇̂̃�𝐷𝐸𝐶𝐴𝑌 (3.73) 

where the phenomenological decay matrix is: 

�̇̂̃�𝐷𝐸𝐶𝐴𝑌 = [
𝛤𝜌22̃ −

𝛤

2
𝜌12̃

−
𝛤

2
𝜌21̃ −𝛤𝜌22̃

] (3.74) 

In matrix form, the equation of evolution is therefore: 

[
𝜌11̃

̇ 𝜌12̃
̇

𝜌21̃
̇ 𝜌22̃

̇
] =

𝑖

ℏ
{[

𝜌11̃ 𝜌12̃

𝜌21̃ 𝜌22̃
] [

0
𝛺𝑜

2
𝛺𝑜

2
−𝛿

] − [
0

𝛺𝑜

2
𝛺𝑜

2
−𝛿

] [
𝜌11̃ 𝜌12̃

𝜌21̃ 𝜌22̃
]}

+ [
𝛤𝜌22̃ −

𝛤

2
𝜌12̃

−
𝛤

2
𝜌21̃ −𝛤𝜌22̃

] 

(3.75) 

 
Fig. 3.7: Energy levels, optical field, and phenomenological  

decay rate in the two-level system 
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By setting �̇̂̃� = 0, in addition to the constraint that 𝜌11̃ + 𝜌22̃ = 1, we find the steady-state solution 

to the Liouville equation. 

𝜌11̃ =
𝛺𝑜

2 + 𝛤2 + 4𝛿2

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

 (3.76) 

𝜌12̃ =
2𝛺𝑜𝛿 + 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

 (3.77) 

𝜌21̃ =
2𝛺𝑜𝛿 − 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

= 𝜌12̃
∗
 (3.78) 

𝜌22̃ =
𝛺𝑜

2

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

= 1 − 𝜌11̃ (3.79) 

Equations 3.76-3.79 show that in the limit of large decay, (𝛤 → ∞), 𝜌11̃ → 1, while 𝜌12̃, 𝜌21̃, and 

𝜌22̃ → 0. In the limit of large detuning (𝛿 → ∞), 𝜌11̃ → 1, while 𝜌12̃, 𝜌21̃, and 𝜌22̃ → 0. In the 

limit of strong electric dipole interaction (𝛺0 → ∞), 𝜌11̃ → 1
2⁄ , 𝜌22̃ → 1

2⁄ , 𝜌12̃ and 𝜌21̃ → 0. We 

note that in a two-level system, 𝜌22̃ can never exceed 𝜌11̃ in the steady state. This has significant 

implications in the design of lasers, as will be discussed in Chapter 4. 

With the decay terms taken into account, the system now resembles a damped driven 

harmonic oscillator. As a result, this system reaches a steady state which is independent of initial 

conditions. This steady state solution oscillates at the optical frequency, but is stationary in the 

rotating wave frame of reference. 

The density matrix formulation is also powerful in its simplicity regarding the calculation 

of physical parameters (or more exactly, the expectation values of physical parameters). Consider 

an observable parameter, represented by the operator �̂�. The expectation value of this operator is: 
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〈�̂�〉 =
1

𝑁
∑⟨𝜓𝑚|�̂�|𝜓𝑚⟩

𝑁

𝑚=1

=
1

𝑁
∑ 𝑡𝑟(|𝜓𝑚⟩⟨𝜓𝑚|�̂�)

𝑁

𝑚=1

= 𝑡𝑟 (
1

𝑁
∑ |𝜓𝑚⟩⟨𝜓𝑚|�̂�

𝑁

𝑚=1

)

= 𝑡𝑟(�̂��̂�) 

(3.80) 

This result is powerful because it applies to all physical observables such as position, energy, 

momentum, angular momentum, etc. More importantly, the index of refraction and coefficient of 

absorption of a medium, which are macroscopic physical parameters depending on collective 

atomic response to an applied electromagnetic wave, can be calculated using this formula. To 

begin the calculation of refractive index and absorption coefficient, we first calculate the 

(expectation value of the) position of an electron. 

One may reasonably expect that the (expectation value of the) position of an electron 

relative to the nucleus should be sinusoidally-varying at the same frequency as the electromagnetic 

wave propagating through it, though not necessarily with the same phase. With this in mind, we 

can express the expectation value of the electron position as: 

〈�̂�〉 = 𝑡𝑟(�̂��̂�) = 𝑡𝑟 ([
𝜌11 𝜌12

𝜌21 𝜌22
] [

0 𝑥0

𝑥0 0
]) = 𝑥0(𝜌12 + 𝜌21) (3.81) 

where 𝑥𝑜 = √ℏ
2𝑚(𝜔2 − 𝜔1)

⁄  [18]. Therefore, the expectation value of the dipole moment of a 

single atom would be: 

〈𝑝〉 = 𝑞〈𝑥〉 = 𝑥0(𝜌12 + 𝜌21) = 𝑥0(𝜌12̃𝑒
𝑖𝜔𝑡 + 𝜌21̃𝑒

−𝑖𝜔𝑡) = 𝑥0(𝜌21̃𝑒
−𝑖𝜔𝑡 + 𝑐. 𝑐. ) (3.82) 

To express Equation 3.82 in phasor notation, the complex conjugate is dropped, so that: 

〈𝑝〉 = 𝑥0 (
2𝛺𝑜𝛿 − 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

) 𝑒−𝑖𝜔𝑡 (3.83) 

If there are 𝑁 atoms per unit volume, then the bulk polarization of the medium is: 
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𝑃 ≡ |�⃗� | = 𝑁〈𝑝〉 = 𝑁𝑥0 (
2𝛺𝑜𝛿 − 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

) 𝑒−𝑖𝜔𝑡 (3.84) 

The material susceptibility, χ̃, is defined as �⃗� = (𝜀𝑜χ̃)�⃗� , so that: 

𝑃 = 𝑁𝑥0 (
2𝛺𝑜𝛿 − 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

) 𝑒−𝑖𝜔𝑡 = (𝜀𝑜χ̃)𝐸𝑜𝑒
−𝑖𝜔𝑡 (3.85) 

where we note that the tilde in the χ̃ is because it is a complex function, which is in contrast with 

the other tildes we have used throughout this chapter to denote quantities in the rotating wave 

reference frame. We therefore see that: 

χ̃ =
𝑁𝑥0

𝜀𝑜𝐸𝑜
(

2𝛺𝑜𝛿 − 𝑖𝛺𝑜𝛤

2𝛺𝑜
2 + 𝛤2 + 4𝛿2

) (3.86) 

Once again, the real and imaginary parts of χ̃ represent the dispersion profile and absorption/gain 

profile, respectively. Plotting these two quantities together shows the relationship between the two.  

 
Fig. 3.8: The real and imaginary parts of χ̃, plotted using Equation 3.86. 

 

The density matrix calculation shows once again that negative dispersion occurs in a two-

level absorptive resonance, which is consistent with the Kramers-Kronig relations as well as the 
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classical calculation of the atom-light interaction. We will eventually use the Liouville equation to 

solve the dynamics of a fast-light laser; however, as we will show in Chapter 4, all lasers must 

utilize at least three levels. At that point, the density matrix formulation will be extended from the 

two-level system to the N-level system, where N≥3. 
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CHAPTER 4 

SUPERLUMINAL DPAL EXPERIMENT 

 

4.1 Introduction to Laser Design 

In Chapter 2, we explored many potential ways to use dispersion (both fast and slow light) 

for sensitivity enhancement in optical metrology. For the following reasons, we concluded by the 

end of Chapter 2 that the best way to implement dispersion for the purpose of optical metrological 

enhancement would be to build a “superluminal” or “fast-light” laser in which the intra-cavity 

lasing beam experiences negative dispersion: 

1. The splitting between frequencies is enhanced by a factor of 𝑛𝑔
−1 in the region of linear 

dispersion. In principle, 𝑛𝑔 can be equal to zero, so that this enhancement is limited 

only by higher-order nonlinearities in the dispersion profile. 

2. The quantum-limited laser linewidth (the so-called Schawlow-Townes linewidth [25]) 

in general can be much narrower than the linewidth of the highest-finesse resonators 

that are experimentally achievable. 

3. The linewidth of a resonator broadens in the presence of negative dispersion; however, 

as discussed in section 2.3, we have reason to believe that the Schawlow-Townes 

linewidth of a laser does not broaden in the presence of negative dispersion. 

 

If we want to build a superluminal laser, it is important to first understand how to build a 

conventional laser. There are many types of lasers, but they all have two things in common: A gain 

medium and a cavity. Figure 4.1 shows a schematic of a conventional laser. The purpose of the 
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gain medium is to amplify the light going into it; for example, if 100 photons enter the “gain cell” 

and 120 photons exit it, then the gain is equal to twenty percent. After exiting the gain cell, the 

light bounces around until it hits a partial reflector, called an “output coupler”. If, for example, the 

output coupler has a reflectivity of 90%, then 10% of the photons (which in this example would 

be twelve) are transmitted, while the other 90% (108 in this example) are reflected and re-amplified 

in the gain cell in the next pass through. However, the number of photons in each subsequent pass 

does not increase indefinitely; as the optical field becomes more powerful, the gain coefficient 

decreases. So, if the gain medium turns 100 photons into 120 photons, that does not necessarily 

mean it will turn 1,000 photons into 1,200 photons – it might only turn 1,000 photons into 1,100 

photons, yielding a gain coefficient of 10%. The laser eventually reaches a steady state once the 

number of photons being created in one pass through the gain medium is balanced out by the 

number of the photons being emitted in one pass through the output coupler (plus any other losses 

occurring inside the cavity). 
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Fig. 4.1: Schematic of a conventional laser. In this example, the cavity contains  

three mirrors (one of them a partial reflector). However, in general, a laser cavity  

can contain any number of mirrors greater than or equal to two. The intra-cavity  

beam gets re-amplified each time it passes through the gain medium, and a fraction of  

it is then emitted from the partial reflector (which is called the “output coupler”) 

 

There are many types of lasers, each with their own mechanism for creating gain; however, 

all gain mechanisms rely on population inversion, a condition in which a higher-energy state has 

a greater population than a lower-energy state. When a resonant photon hits an atom in the upper 

energy state, it causes the atom to drop to the lower energy state, releasing a photon in the process. 

When a resonant photon hits an atom in the lower state, the photon is absorbed and the atom is 

excited into the higher energy state. Therefore, as long as there are more atoms in the upper state 

than in the lower state, the number of photons leaving the gain medium exceeds the number of 

photons entering it. This concept is illustrated in Figure 4.2. 



71 

 

 
Fig. 4.2: Four atoms start out in the upper state and two atoms start out in the lower state. When 

a photon hits an atom in the upper state, the atom drops to the lower state, releasing a photon 

with it. When a photon hits an atom in the lower state, the atom absorbs the photon, thus exciting 

the atom to the higher state. Therefore, in this example, one photon enters the cell and three 

photons exit. This net gain of two photons results from the fact that the system started out with 

four atoms in the upper state and two atoms in the lower state. 

 

We showed in Chapter 3 that in a two-level system, the steady-state value of 𝜌22̃, 

representing the fraction of atoms in the upper state, can never exceed 
1

2
. Therefore, population 

inversion can never be achieved in a two-level system; as a result, all lasers must utilize at least 

three energy levels [26]. To understand how population inversion can be achieved in a three-level 

system, consider the three-level atom in Figure 4.3(a). This atom has decay rates from |3⟩ → |1⟩, 

|2⟩ → |1⟩, and |3⟩ → |2⟩, labeled 𝛤31, 𝛤21, and 𝛤32, respectively. If (𝐸2 − 𝐸1) ≫ 𝑘𝐵𝑇, then in 

thermal equilibrium, all atoms are in state |1⟩ [27]. In Figure 4.3(b), we apply an optical pump 

resonant with the |1⟩ → |3⟩ transition, so that the atoms are transferred from |1⟩ to |3⟩ at a rate of 

𝑅𝑃𝑈𝑀𝑃 [28]. 
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Fig. 4.3: (a) A three-level atom in thermal equilibrium, with associated energy levels and 

phenomenological decay rates; (b) The same atom, but with an “optical pump” which 

provides coupling between states |1⟩ and |3⟩. 
 

If 𝑛1, 𝑛2, and 𝑛3 are the fractions of atoms in states |1⟩, |2⟩, and |3⟩, respectively, then the “atomic 

rate equations” can be written as follows: 

𝑑𝑛1

𝑑𝑡
= −𝑅𝑃𝑈𝑀𝑃𝑛1 + 𝛤21𝑛2 + 𝛤31𝑛3 (4.1) 

𝑑𝑛2

𝑑𝑡
= −𝛤21𝑛2 + 𝛤32𝑛3 (4.2) 

𝑑𝑛3

𝑑𝑡
= 𝑅𝑃𝑈𝑀𝑃𝑛1 − (𝛤32 + 𝛤31)𝑛3 (4.3) 

In addition, all atoms are assumed to be in one of these three states, so that 𝑛1 + 𝑛2 + 𝑛3 = 1. 

In the steady state, Equations 4.1-4.3 can be written in matrix form as: 

[

−𝑅𝑃𝑈𝑀𝑃 𝛤21 𝛤31

0 −𝛤21 𝛤32

𝑅𝑃𝑈𝑀𝑃 0 −(𝛤32 + 𝛤31)
] [

𝑛1

𝑛2

𝑛3

] = [
0
0
0
] (4.4) 
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Solving Equation 4.4, the ratio between the populations of states |2⟩ and |1⟩ in steady state is: 

(
𝑛2

𝑛1
)
𝑆𝑇𝐸𝐴𝐷𝑌𝑆𝑇𝐴𝑇𝐸

=
𝑅𝑃𝑈𝑀𝑃

𝛤21 (1 +
𝛤31

𝛤32
)
 

(4.5) 

Population inversion between |1⟩ and |2⟩ can therefore be achieved for large enough values of 

𝑅𝑃𝑈𝑀𝑃, provided that 𝛤32 ≠ 0. Once population inversion is achieved between |1⟩ and |2⟩, a 

photon with frequency 
𝐸2−𝐸1

ℏ
 propagating through this medium would be amplified. Naturally, a 

photon with a frequency very close to this value may also be amplified because the gain always 

has some bandwidth. This “gain bandwidth” depends on many factors, including the pump rate, 

the decay rates, and the particular gain material being used. Lasers can have gain bandwidths less 

than 1 MHz, all the way up to tens of THz. In order for a laser to operate, the gain must exceed all 

losses inside the cavity, including photon transmission from the output coupler, as well as 

reflection, absorption, and scattering of photons from other optical elements inside the cavity. An 

empty cavity with round trip length 𝐿 has longitudinal eigenmodes at frequencies of 𝑓𝑚 =
𝑚𝑐

𝐿
, 

where 𝑚 is an integer called the “mode number”. The free spectral range (𝐹𝑆𝑅) is defined as the 

frequency spacing between neighboring modes, so that 𝐹𝑆𝑅 =
𝑐

𝐿
. If the bandwidth over which the 

laser can operate is greater than the 𝐹𝑆𝑅, then there are multiple modes inside the “net gain 

bandwidth”, as shown in Figure 4.4. 
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Fig. 4.4: The net gain bandwidth is the range of frequencies over which gain  

exceeds loss. In principle, the laser can operate anywhere within this range. In  

this diagram, there are five modes inside the net gain bandwidth. 

 

There are two detrimental effects that can (and often do) arise from having multiple modes 

inside the net gain bandwidth: 

1. Multi-mode operation: The laser operates simultaneously on two or more modes, so that 

there are two or more optical frequencies present. This is unacceptable for a laser 

interferometer which requires single-frequency operation. 

2. Mode competition: The laser operates on one mode. However, if two or more modes have 

similar round trip gain, the laser can spontaneously jump from one mode to another (this 

is called mode hopping). Even if the laser does not mode hop, the existence of a competing 



75 

 

mode can destabilize the lasing mode. This is also unacceptable for a laser interferometer, 

where the optical frequency must have a known and stable value. 

 

It is important to take these issues into consideration when selecting a suitable gain medium 

for a laser interferometer. Although gain can be narrowed with the insertion of an etalon into the 

cavity, the etalon also reduces the gain amplitude, thus making lasing more difficult to achieve. 

Additionally, intra-cavity components can de-phase and therefore broaden the optical field, which 

ultimately reduces sensitivity when using the device for optical metrology. 
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4.2 Designing a Superluminal Laser 

In Chapter 3 we discussed the connection between the real and imaginary parts of the 

material susceptibility �̃�(𝜔). Specifically, the real part, 𝜒𝑅(𝜔), which represents the dispersion 

spectrum, and the imaginary part, 𝜒𝐼(𝜔), which represents the gain/loss spectrum, are linked 

through the Kramers-Kronig relations. These relations tell us that positive dispersion 

(corresponding to subluminal group velocity) generally occurs inside a gain peak, while negative 

dispersion (corresponding to superluminal group velocity) generally occurs inside a loss (or 

absorption) peak. Therefore, it would be reasonable to suggest that a superluminal laser might be 

realized by creating a gain medium with a narrow spectral “dip” in the middle, as shown in Figure 

4.5. If the laser operates on this dip, then it may experience negative dispersion, thus making it 

superluminal. In this section, we will calculate whether this hypothesis is plausible. 

 
Fig. 4.5: A gain profile with a narrow dip in the center. We hypothesize (and will confirm)  

that a laser operating at this dip frequency should be superluminal. 
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In such a laser, the composite gain profile, −𝜒𝐼(𝜔), can be expressed as the superposition of a 

broadband gain and a narrow dip. Using the two-level density matrix model developed in Chapter 

3, the analytic expression for 𝜒𝐼(𝜔) could be written as: 

𝜒𝐼(𝜔) = −
𝐺𝑔𝛤𝑔

2

2𝛺𝑔
2 + 𝛤𝑔

2 + 4(𝜔 − 𝜔𝑜)2
+

𝐺𝑑𝛤𝑑
2

2𝛺𝑑
2 + 𝛤𝑑

2 + 4(𝜔 − 𝜔𝑜)2
 (4.6) 

where the subscripts “𝑔” and “𝑑” refer to “gain” and “dip, respectively, while 𝐺𝑔 and 𝐺𝑑 are the 

amplitudes of the (unsaturated) gain and dip profiles, respectively, which depend on the density of 

atoms, atomic dipole moments, and transition linewidths. Applying the Modified Kramers-Kronig 

(MKK) relations, which apply to saturable media [29,30,31] onto Equation 4.6, yields 𝜒𝑅(𝜔): 

𝜒𝑅(𝜔) =
2𝐺𝑔(𝜔 − 𝜔𝑜)𝛤𝑔

2𝛺𝑔
2 + 𝛤𝑔

2 + 4(𝜔 − 𝜔𝑜)2
−

2𝐺𝑑(𝜔 − 𝜔𝑜)𝛤𝑑

2𝛺𝑑
2 + 𝛤𝑑

2 + 4(𝜔 − 𝜔𝑜)2
 (4.7) 

In order to calculate whether a superluminal laser could be made by inserting this medium into a 

cavity, we solve the self-consistent single-mode laser equations [32] which govern the phase and 

amplitude of the electric field of a single-mode laser inside a cavity: 

𝑑𝜑

𝑑𝑡
= (𝛺𝐶 − 𝜔) −

𝜒𝑅

2
𝜔 (4.8) 

𝑑𝐸

𝑑𝑡
= −

𝜔𝐸

2𝑄
−

𝜒𝐼𝐸

2
𝜔 (4.9) 

where 𝑄 is the empty cavity quality factor and 𝛺𝐶  is the empty cavity resonance frequency. If the 

round trip cavity length is 𝐿, then the sensitivity of the empty cavity resonance frequency to small 

length perturbations would be 
𝑑𝛺𝐶

𝑑𝐿
⁄ , while the sensitivity of the laser frequency to small length 

perturbations is 𝑑𝜔
𝑑𝐿⁄ . The ratio between these two derivatives, 𝑅 ≡

𝑑𝜔
𝑑𝐿⁄

𝑑𝛺𝐶
𝑑𝐿⁄

, would therefore be 
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the factor by which laser frequency sensitivity is enhanced (𝑅 > 1) or reduced (𝑅 < 1) relative to 

the empty cavity. Solving Equations 4.8 and 4.9 in the steady state results in: 

𝑅 =
1

1 +
𝜒𝑅

2 +
𝜔
2

𝑑𝜒𝑅

𝑑𝜔

=
1

𝑛𝑔
 (4.10) 

In Chapter 2, we made the unsubstantiated claim that the enhancement factor of a fast-light laser 

is equal to 𝑛𝑔
−1 -- the same as that of a fast-light resonator. We have now verified that this is 

indeed the case. 

Analytic expressions for 𝑛𝑔 and 𝑅 are then calculated using the analytic expression for 𝜒𝑅 

in Equation 4.7. Figure 4.6(a) shows a plot of 𝜒𝑅 with a corresponding plot of 𝑅 in Figure 4.6(b). 

The parameters used in this plot are as follows [33]: 𝛤𝑔 = 2𝜋 × 109𝑠−1, 𝛤𝑑 = 2𝜋 × 107𝑠−1, 𝜔𝑜 =

2𝜋 × 3.8 × 1014𝑠−1, 𝑁𝑔 = 9 × 106𝑐𝑚−3, 𝑁𝑑 = 1.2645 × 1011𝑐𝑚−3, 𝐺𝑔 = 12
𝑄⁄ , 𝐺𝑑 =

10.11591
𝑄⁄ . Here, 𝑁𝑔 and 𝑁𝑑 are the densities of gain and dip atoms, respectively. 

 
Fig. 4.6: (a) Numerical plot of 𝜒𝑅 versus detuning; (b) corresponding  

numerical plot of enhancement factor 𝑅 versus detuning 
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Using these (experimentally realistic) parameters, 𝑅 reaches a peak value of ~1.8 × 105. Outside 

of the “dip region”, the values of 𝜒𝑅 and 𝑅 asymptotically approach those of the empty cavity. 

With the expression for 𝑅 as a function of frequency shift, we can now solve the frequency 

shift as a function of cavity length change. If the round trip cavity length is one meter and 𝜔𝑜 is 

2𝜋 × 3.8 × 1014𝑠−1 (corresponding to the D2 transition in rubidium), then the mode number is 

𝑚 = 1282051. To be exact, this mode number yields a cavity length of 0.99999978 meter. Since 

𝐿 =
2𝜋𝑚𝑐

𝛺𝑐
 and 𝜔 =

𝛺𝑐

1+
𝜒𝑅

2⁄
, this means that: 

𝐿 =
2𝜋𝑚𝑐

𝜔 (1 +
𝜒𝑅

2 )
 (4.11) 

With the frequency dependence of 𝜒𝑅 from Figure 4.6(a), cavity length 𝐿 can be plotted as a 

function of frequency 𝜔, as shown in Figure 4.7. 

 
Fig. 4.7: Numerical plot of 𝐿 versus 𝜔, corresponding to Fig. 4.6 
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In the vicinity of 𝐿 = 𝐿𝑜, 𝜔 is almost flat, indicating that the laser is operating under the so-called 

white-light cavity (WLC) condition. When the deviation from 𝐿𝑜 increases, the slope eventually 

increases, implying that the enhancement factor decreases as the cavity moves further from 𝐿𝑜. 
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4.3 Choosing a Dip Mechanism 

We showed in Section 4.2 that a superluminal laser can be built by putting a narrow dip in 

the middle of the gain profile. In principle, there are many different choices of gain mechanisms, 

as well as many choices of dip mechanisms. In order to produce values of 𝑛𝑔 several orders of 

magnitude greater than unity, the slope of dispersion must be very steep. Because this slope is 

related to the absorption profile via the Kramers-Kronig relations, the linewidth of the dip should 

be very narrow; ideally a few MHz or less. Optical filters (such as notch filters) have linewidths 

of several GHz, making them unsuitable for this application. Doppler-broadened absorption in 

alkali vapor is narrower, but is still has a linewidth of several hundred MHz at room temperature. 

Two-photon resonant processes in atomic vapor, on the other hand, are much narrower because 

they are insensitive to Doppler broadening. As a result, we chose to use Raman depletion in 

rubidium vapor as the dip mechanism. 

In 2009, our group had reported the demonstration of simultaneous fast and slow light 

effects in 85Rb vapor via Raman gain and Raman depletion, respectively [34]. The setup from this 

experiment is shown in Figure 4.8(a), where states |1〉, |2〉, |3〉, and |4〉 are defined as the 

5S1/2(F=2) hyperfine level, the 5S1/2(F=3) hyperfine level, the 5P1/2 manifold, and the 5P3/2 

manifold, respectively. At room temperature, the energy difference between states |1〉 and |2〉, 

denoted as 𝛥12, is far less than the thermal energy 𝑘𝐵𝑇, so that these two states are roughly equally 

populated in thermal equilibrium. Population inversion between |1〉 and |2〉 is produced by 

optically pumping atoms from state |1〉 to state |4〉. The effective result is a decay from state |1〉 

to state |2〉; this experimental configuration can therefore be simplified as an effective three-level 

system, shown in Figure 4.8(b). A Raman pump and Raman probe are applied to the |2〉 → |3〉 and 
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|1〉 → |3〉 transitions, respectively. Doppler-broadened absorption of the Raman pump and Raman 

probe requires that they be detuned from resonance, with an optimal detuning value of 

approximately 1 GHz; the Raman pump and Raman probe detunings are denoted as 𝛥𝑅𝑃 and 𝛥𝐿, 

respectively. When 𝛥𝑅𝑃 = 𝛥𝐿, the two-photon resonance condition is satisfied, so that the 

difference between the Raman pump and Raman probe frequencies is equal to 𝛥12, the ground-

state hyperfine splitting, which is approximately 3.0357 GHz in 85Rb. 

 
Fig. 4.8: (a) Relevant energy levels, optical fields, and detunings in the pump-probe experiment; 

(b) effective three-level system in which the optical pump is modeled as a decay rate 

 

The population in state |2〉 exceeds that of state |1〉 as a result of the optical pumping. 

Therefore, when the pump and probe are two-photon resonant, the probe experiences Raman gain 

at the expense of the pump, which experiences “Raman depletion”. The results of this experiment 

are presented in Figure 4.9(a), which shows that the full-width half maximum (FWHM) width of 

this Raman process is on the order of 1 MHz, thus making it several orders of magnitude narrower 

than Doppler-broadened absorptions and optical notch filters. A heterodyne detection technique 

then measured the corresponding indices of refraction, and found that the probe gain was 
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associated with positive dispersion, while the pump depletion was associated with negative 

dispersion, as shown in Figure 4.9(b). 

 
Fig. 4.9: (a) Experimental results showing gain in the Raman probe and depletion in the  

Raman pump; (b) corresponding experimentally-measured indices of refraction. These  

results are consistent with the Kramers-Kronig relations as well as the semiclassical  

two-level density matrix calculation. 

 

This experiment provides a proof-of-concept for a narrowband (and therefore steep) 

anomalous dispersion which can be applied to an intra-cavity lasing beam in order to create a 

superluminal laser. In other words, steep anomalous dispersion in a laser can be created by setting 
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up precisely this type of system, where an intra-cavity lasing beam plays the role of the Raman 

pump. 
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4.4 Choosing a Gain Mechanism 

After choosing the dip mechanism, the gain mechanism must be chosen. In principle, we 

can choose any gain with energy levels corresponding to the Raman depletion; however, as 

mentioned in Section 4.1, it is important to ensure that multi-mode operation and mode 

competition are eliminated. Additionally, the magnitude of gain must be high enough for the 

superluminal laser to lase with Raman depletion inside the cavity, which suppresses the round-trip 

gain to some extent. With these considerations in mind, the gain medium we first chose was 

optically-pumped rubidium vapor mixed with helium buffer gas. The first demonstration of an 

alkali laser was reported in 2003, in which the D2 line of rubidium vapor was optically pumped 

with a Ti-Sapphire laser [35]. The buffer gas, which in Ref. 35 was a mixture of ethane and helium, 

provided collisional relaxation from the P3/2 manifold to the P1/2 manifold, thus creating population 

inversion (and therefore lasing) on the D1 line, as shown in Figure 4.10. The collisional relaxation 

induced by the buffer gas also causes the atomic energy levels to broaden significantly. As a result, 

the 5S1/2 manifold (containing the F=2 and F=3 hyperfine levels which are split by 3.0357 GHz) 

can be treated as one energy level, denoted as |𝑎〉. 
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Fig. 4.10: Relevant energy levels, optical fields, and buffer- 

induced decay rate associated with the alkali laser.  

 

The Diode-Pumped Alkali Laser (DPAL) is a good gain candidate for several reasons: 

1. High Round Trip Gain: As mentioned previously, the gain must be high enough to 

compensate for the Raman depletion that the intra-cavity lasing beam experiences. To 

determine the magnitude of unsaturated gain, we conducted an experiment in which we 

measured the gain of a weak (1.3 μW) probe beam. In this experiment, a strong optical 

pump on the D2 line and a weak probe on the D1 line [Figure 4.11(a)] are cross-polarized 

and combined in a polarizing beam splitter (PBS). These beams, which spatially overlap, 

are sent through a cell containing rubidium vapor mixed with helium buffer gas [Figure 

4.11(b)]. After the cell, another PBS separates the two beams, and the probe beam is sent 

into a photodetector (PD). The results in Figure 4.11(c) show that the single-pass gain was 

as high as ~3.3 with an optical pump power of 835 mW, and as high as ~4.0 with an optical 

pump power of 1.22 W. In Ref. [36], DPAL output power was measured versus pump 
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power, for five different output coupler reflectivities. Figure 4.12 shows that the 20%-

reflectivity output coupler yielded the highest output power, which is further evidence of 

high round-trip gain. 

2. Relatively Narrow Gain: In the experiment shown in Figure 4.11, the probe detuning 

[denoted as Δ in Figure 4.11(a)] was scanned in order to determine the unsaturated gain 

bandwidth. Depending on the pump strength, the FWHM is 5-10 GHz, as shown in Figure 

4.11(c). Only modes experiencing gain within a few percent of the peak gain are candidates 

for mode competition and multi-mode lasing, so that a 30-centimeter cavity (which has a 

free spectral range of 1 GHz) would have relatively low susceptibility to these undesirable 

effects. The insertion of a low-finesse etalon into a laser cavity is enough to ensure mode-

competition-free and single-mode lasing. 

 
Fig. 4.11: (a) Energy levels and optical fields; (b) experimental setup; (c) results of the DPAL 

probe gain experiment 

 

3. High Conversion Efficiency: The DPAL efficiently converts optical pump energy into 

lasing energy due to the low quantum defect (~1.9%) and broadband absorption on the D2 
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line. In fact, one of the main applications for which the DPAL was initially developed was 

the efficient conversion of low-quality (broadband, high M2) light into high-quality 

(narrowband, low M2) light [36,37,38,39,40,41]. The efficient conversion of energy makes 

it easier to reduce the size of the superluminal laser for applications in which 

miniaturization is important, such as inertial navigation in spacecrafts and satellites. In 

addition, the minimum-measurable linewidth (Equation 2.46) is inversely proportional to 

the square root of power, so that higher power laser means higher resolution. Figure 4.12, 

which was taken from Reference 36, shows that the DPAL has high slope efficiency, 

particularly with a 20%-reflectivity output coupler. 

 
Fig. 4.12: Conversion efficiency of the DPAL with different output couplers 
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 As mentioned previously, the buffer gas is usually chosen to be helium or ethane (or some 

combination of them). For the first few months of the DPAL project, we used helium buffer gas 

because of the fear that a hydrocarbon buffer gas would chemically react with the rubidium and 

leave deposits on the cell windows [42]. These chemical deposits would be detrimental to round-

trip gain, and would cause the laser to stop working. From our experience, a few atmospheres of 

helium were necessary to achieve decent lasing, as shown in Figure 4.13, which was an issue 

because there was always a chance that the windows could explode outwards due to high pressure. 

 After a few months of using helium buffer gas, a colleague suggested that we try ethane. 

As it turns out, the chemical reaction we feared never occurred, and the ethane worked far better 

than helium, while requiring far lower (sub-atmospheric) pressure, as shown in Figure 4.13. 

 
Fig. 4.13: DPAL output power with helium pressures ranging from 20 PSI to 37 PSI, and with 

ethane pressure of 5 PSI. Although the output power increases with increasing helium pressure, 

ethane is clearly superior to helium in conversion efficiency. All data in this figure were taken 

with an output coupler reflectivity of 50% and gain cell temperature of approximately 120°C. 
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4.5 Combining the Gain and Dip Mechanisms 

 The superluminal laser can now be built by inserting the gain and dip mechanisms into a 

cavity. A schematic of the single-direction superluminal laser is illustrated in Figure 4.14(a), while 

the energy levels associated with the gain and dip are shown in Figures 4.14(b) and 4.14(c), 

respectively. The gain cell contains naturally-occurring rubidium (72% 85Rb, 28% 87Rb) vapor 

mixed with ethane buffer gas, while the dip cell contains isotopically-pure 85Rb vapor. The buffer 

gas broadens the transitions in the gain cell atoms by ~5-10 GHz; meanwhile, the hyperfine 

splitting between the ground-state levels is ~3.0 GHz in 85Rb and ~6.8 GHz in 87Rb, so that the 

optical pump excites atoms from both ground states in both isotopes to their respective P3/2 

manifolds. Polarizing beam splitters (PBSs) inject the optical pump and Raman probe, which are 

both s-polarized, into and out of the cavity. The lasing beam transmits through the PBS, and is 

therefore p-polarized. 

For now, we want to demonstrate a single-direction superluminal DPAL without the 

complications associated with bi-directional lasing; the optical isolator ensures that lasing occurs 

in only one direction. A beam splitter (BS) diverts a small portion of the laser output to an acousto-

optic modulator (AOM) which up-shifts the frequency of the input beam by a frequency of 𝛥12, 

which is the hyperfine splitting between the 5S1/2(F=2) and 5S1/2(F=3) states of 85Rb, as denoted 

in Figures 4.14(b) and 4.14(c). This up-shifted beam is the Raman probe, which is two-photon 

resonant with the intra-cavity lasing beam inside the dip cell. The optical pump in the dip cell 

transfers atoms from |1〉 to |2〉, thus creating a Raman population inversion between these two 

states. The Raman probe is therefore amplified inside the dip cell at the expense of the lasing beam, 

which is depleted. 
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Figure 4.14: (a) Schematic of a single-direction superluminal DPAL; (b) gain cell containing 

both isotopes of rubidium. Because of buffer gas induced collisional broadening, both isotopes 

contribute approximately equal amounts (per atom) to the gain; (c) dip cell containing just the 
85Rb isotope. Two photon resonance in the dip cell creates Raman depletion of the lasing beam. 

 

Figure 4.14 is a simplified schematic showing only the essential elements; Figure 4.15 

shows a more detailed schematic of the system built in our laboratory [43]. The laser cavity is an 

equilateral triangle with each leg 24 cm in length. The output coupler is flat and has a reflectivity 

of 60% while the other two mirrors are high reflectors with 20 cm radii of curvature. These cavity 
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dimensions and radii of curvature are chosen so that the laser output is astigmatism-free without 

the use of an intra-cavity lens [44]. The cavity mode has two waists which are located at the output 

coupler and the center of the gain cell. The gain cell is made with ConFlat® components which 

support high vacuum, and the windows are anti-reflection coated on both sides to minimize 

roundtrip loss. The gain cell is connected to an oven containing an ampoule of naturally-occurring 

rubidium. A cylinder containing research-grade ethane gas is also connected to the gain cell, and 

the ethane pressure is controlled with a regulator. The oven and gain cell are each wrapped with 

heating wire, the temperatures of which are controlled with Variacs (variable AC voltage sources). 

The windows of the gain cell are wrapped with a separate heating wire which is kept at a higher 

temperature than the rest of the cell, in order to prevent vapor condensation on the windows. 

The optical pump is produced by amplifying the output of a Toptica tunable diode laser 

with a Sacher Lasertechnik tapered amplifier (TA). This optical pump beam is s-polarized so that 

it is reflected into the gain cell by a polarizing beam splitter (PBS). A PBS at the other end of the 

gain cell expels the portion of optical pump not absorbed by the gain atoms, so that the optical 

pump does not make it through to the output coupler. Because of the presence of the PBS’s, only 

p-polarized light experiences roundtrip gain, thus forcing the laser output to be p-polarized. The 

optical isolator prevents directional mode competition by ensuring lasing in only one direction. It 

also rotates the input light by 45⁰, necessitating the insertion of a half-wave plate directly after it 

to rotate the light back to p-polarization. A fraction of the output goes to a photodetector, while 

the remainder is diverted to an AOM. The frequency of the modulating acoustic signal is 

approximately 1.518 GHz (half the ground-state hyperfine splitting in 85Rb) and is produced by a 

voltage-controlled oscillator (VCO). The sidebands from the AOM are separated spatially, and the 

first-order upshifted sideband is reflected back into the AOM to produce a double-shifted beam, 
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which is then diverted with a beam splitter. This upshifted Raman probe beam has a maximum 

power of a few hundred microwatts, which is not strong enough to provide the range of Raman 

depletion necessary for comprehensive characterization of the superluminal laser. Thus, the Raman 

probe is amplified through another TA. In addition to the amplified beam, the TA produces some 

stimulated emission with a spectrum a few THz wide. The holographic grating separates all 

unwanted frequency components from the TA output so that the Raman probe beam is spectrally 

pure. This Raman probe is then injected into the Raman cell with a PBS. The Raman chamber is a 

sealed quartz cell containing pure 85Rb vapor. In order to prevent Zeeman and AC Stark splitting, 

heating wire is wrapped around the cell bifilarly, and the cell is housed inside a mu-metal box. The 

buffer gas broadens the transitions in the gain cell atoms by ~5-10 GHz while the hyperfine 

splitting between the ground-state levels is ~3.0 GHz in 85Rb and ~6.8 GHz in 87Rb. Therefore, 

the optical pump excites atoms from both ground states in both isotopes to their respective P3/2 

manifolds. Buffer gas induced broadening in the gain cell enables us to use same optical pump in 

the gain and dip cells. Therefore, a fraction of the DPAL optical pump is used as the optical pump 

for the Raman cell. 

Because of Doppler broadening, two-photon interactions in the dip cell between the Raman 

probe and lasing beam only occur for the near-zero-velocity atoms if the Raman probe and lasing 

beam are counter-propagating; however, if the two are co-propagating, all velocity groups 

experience two-photon interaction. Therefore, to maximize Raman efficiency, the Raman probe is 

made to co-propagate with the lasing beam. However, the propagation direction of the optical 

pump does not matter in principle, because it is incoherent with the lasing beam. We therefore 

choose to inject the optical pump in the counter-propagating direction to circumvent the need to 
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combine the Raman probe and the optical pump with a beam splitter, which would waste half of 

the power and require more optical components. 

 
Figure 4.15: Detailed schematic of superluminal DPAL 

 

The intra-cavity etalon prevents mode competition and controls the DPAL lasing 

frequency. The peak of the DPAL gain profile is generally several GHz above the maximum-

frequency D1 transition in 85Rb [5S1/2(F=2)→5P1/2(F=3)]; therefore, without the etalon, this is the 

frequency at which the DPAL lases; however, the optimal detuning for the Raman process is about 

1 GHz above (or below) resonance. The etalon (which is a flat piece of glass with partially 

reflective surfaces) has its own set of resonances. Because the thickness of the etalon is far smaller 

than the cavity length, the free spectral range (FSR) of the etalon is far larger than the FSR of the 

cavity. The “composite” gain profile depends on the laser gain as well as the etalon transmission, 
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so that the DPAL operates on the mode within the broadband gain profile corresponding to an 

etalon peak, as shown in Figure 4.16. The effective length of the etalon (and therefore locations of 

etalon transmission peaks) can be changed by slightly rotating the etalon, which enables fine tuning 

of the output frequency. 

 
Figure 4.16: The lasing mode is the one with the highest “composite gain” which depends 

on the spectrum of the gain medium as well as the etalon transmission spectrum 
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4.6 Experiment Measuring DPAL Raman Depletion 

After building the superluminal laser system, we conducted an experiment with the goal of 

demonstrating experimentally the existence of Raman depletion in our Raman-DPAL system and 

characterizing the results [43]. All relevant energy levels and detunings in this experiment are 

shown in Figure 4.17. As mentioned previously, the Raman probe is created by frequency-shifting 

the laser output through an acousto-optic modulator (AOM) by a frequency of approximately 

3.0357 GHz, which is the hyperfine splitting between the 5S1/2(F=2) and 5S1/2(F=3) states of 85Rb, 

denoted as 𝛥12. The exact AOM frequency shift, 𝛥𝐴𝑂𝑀, is: 

𝛥𝐴𝑂𝑀 = 𝑓𝑅𝑃 − 𝑓𝐿 = 𝛥12 + (𝛥𝑅𝑃 − 𝛥𝐿) ≡ 𝛥12 + 𝛿 (4.12) 

where 𝑓𝑅𝑃 and 𝑓𝐿 are the Raman probe and lasing frequencies, respectively, and 𝛿, the so-called 

two-photon detuning, is equal to (𝛥𝑅𝑃 − 𝛥𝐿), as denoted in Figure 4.17. 

 
Fig. 4.17: (a) Relevant energy levels and optical fields in the gain cell; 

(b) relevant energy levels and optical fields in the dip cell 

 

The VCO controls the value of 𝛥𝐴𝑂𝑀 and therefore the value of 𝛿. Two-photon resonance 

between the Raman probe and intra-cavity lasing beam is maximized when 𝛿 = 0, or when 
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𝛥𝐴𝑂𝑀 = 𝛥12, under which the lasing beam should experience maximum Raman depletion. We 

should expect for the strength of the two-photon interaction to decrease as |𝛿| increases. The 

Raman linewidth, 𝛤𝑅𝐴𝑀𝐴𝑁 (Figure 4.18), characterizes the bandwidth of 𝛿 over which the Raman 

process occurs. 

 
Fig. 4.18: The Raman interaction is strongest at 𝛿 = 0. The width of this 

interaction, 𝛤𝑅𝐴𝑀𝐴𝑁, is the Raman linewidth. 

 

In this experiment, the DPAL output power was measured as a function of 𝛿, which was 

scanned about a central value of zero. The output power was measured for six different values of 

Raman probe power, as shown in Figure 4.19. 
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Fig. 4.19: DPAL output power versus 𝛿, measured with six Raman probe powers. The gain  

cell and the dip cell are each 10 centimeters in length. The gain cell is heated to a temperature  

of 120⁰C and contains ethane with pressure of 0.06 atm, while the dip cell is at a temperature 

of 100⁰C. The DPAL optical pump is 200 µm in radius and 1.2 W in power, while the Raman 

optical pump is 1000 µm in radius and 10 mW in power. 

 

The depth of the depletion increases monotonically with increasing Raman probe power, 

as should be expected. Furthermore, the Raman linewidth is generally on the order of ~1MHz, but 

also increases with increasing Raman probe power. In general, the Raman interaction linewidth 

depends on the intensities and detunings of the optical and Raman pumps and intra-cavity lasing 

beam, as well as the vapor temperature, but the ~1 MHz order of magnitude is consistent with the 

data in Figure 4.9 from Section 4.3. 
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Direct measurement of superluminal enhancement requires a high degree of classical noise 

suppression as well as fast servo-mechanisms to maintain a high degree of stability of the laser 

sources. At the time this experiment was performed, these systems were not yet precise enough to 

perform direct measurements of enhancement. However, we were able to infer the degree of 

superluminal enhancement by comparing the experimental results with a numerical model, and 

then using the parameters from this model to calculate the expected group index and therefore 

superluminal enhancement factor. 
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4.7 Numerical Model of Superluminal DPAL 

In Section 4.2, we provided an analytic solution for the steady-state behavior of the 

superluminal laser, including the sensitivity enhancement factor. In this calculation, 𝜒𝐼(𝜔) was 

modeled as a superposition of a broadband Lorentzian gain profile and a narrowband Lorentzian 

dip centered at the lasing frequency 𝜔𝑜 (Equation 4.6). While this Lorentzian model is a good first-

order approximation, the exact characteristics of the gain and dip profiles depend on many 

interconnected variables such as Doppler broadening, potential transverse and longitudinal mode 

competition, spectral hole burning, AC Stark shifts, and attenuation of optical fields due to 

absorption. Therefore, numerical methods are necessary for calculating and analyzing accurately 

the dynamics in the DPAL-Raman system. 

In Chapter 3, we introduced the concept of the density matrix, presented the density matrix 

version of the Schrödinger equation (the so-called Optical Bloch equation), and solved this 

equation for a two-level atomic system in which the two states are coupled with a near-resonant 

optical field. In this chapter, we extend the density matrix analysis of the two-level system to that 

of an N-level system, where N≥3. Our approach for numerically solving the behavior of the 

Raman-DPAL system relies on solving the single-mode laser equations (Equations 4.8 and 4.9) 

and the Optical Bloch equation (Equation 3.75) simultaneously and iteratively until a self-

consistent, steady-state solution is found. From this we can calculate the intra-cavity lasing beam 

susceptibility, χ(𝜔), which can be then used to calculate superluminal enhancement factor, as well 

as many other potential quantities of interest. The MATLAB code for this calculation is included 

in Appendix A. 
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4.7.1 Density Matrix of Dip Medium 

The dip cell contains pure 85Rb vapor with no buffer gas, and has three different beams 

going through it (optical pump, Raman pump, intra-cavity lasing beam), as shown in Figure 4.20. 

The F=2 and F=3 hyperfine states in the 5S1/2 manifold are denoted as |1〉 and |2〉, respectively; 

the entire 5P1/2 manifold is denoted as |3〉; the entire 5P3/2 manifold is denoted as |4〉. 

Several decay rates are taken into consideration, where, in Figure 4.20, the decay rate from 

state |𝑖〉 to state |𝑗〉 in general is denoted as 𝛤𝑖𝑗. 𝛤3𝑅 and 𝛤4𝑅 are the inverse radiative lifetimes of 

the 5P1/2 and 5P3/2 manifolds, and are equal to 36.1×106 sec-1 and 38.1×106 sec-1, respectively. The 

decay rates 𝛤31 and 𝛤32 are assumed to be equal, so that 𝛤31 = 𝛤32 = 𝛤3𝑅 2⁄ ; the same is true for 

𝛤41 and 𝛤42. At experimental temperatures (approximately 120⁰C), the values of 𝛥12 and 𝛥34 are 

several orders of magnitude smaller than the thermal energy 𝑘𝐵𝑇, so that the ratios 𝛤12 𝛤21⁄  and 

𝛤34 𝛤43⁄  are determined only by the ratios of the Zeeman degeneracies, which are equal to 7/5 and 

2, respectively. 

 
Fig. 4.20: The relevant energy levels, optical fields, and decay rates in the dip cell 
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Since the optical pump transfers atoms from |1〉 to |2〉, it can be modeled as an effective 

decay rate, denoted as 𝛤𝑂𝑃. This enables the dip medium to be modeled as an effective three-level 

system in which the decay rate from |1〉 to |2〉 is now 𝛤12
′ ≡ 𝛤12 + 𝛤𝑂𝑃, as illustrated in Figure 4.21. 

 
Fig. 4.21: The energy levels, optical fields, and decay rates  

used in the effective three-level model of the dip cell 

 

The Optical Bloch equation  governing the evolution of the density matrix of the dip 

medium, �̂̃�𝐷, is: 

�̇̂̃�𝐷 = −
𝑖

ℏ
[�̂̃�𝐷 , �̂̃�𝐷] + �̇̂̃�𝐷(𝐷𝐸𝐶𝐴𝑌) + �̇̂̃�𝐷(𝑆𝑂𝑈𝑅𝐶𝐸) (4.13) 

where the “D” subscript denotes “Dip”. The �̇̂̃�𝐷(𝑆𝑂𝑈𝑅𝐶𝐸) term, which does not appear in the two-

level system in Chapter 3, is relevant for systems with more than two levels, and accounts for 

equality between net population inflows and outflows [45,46,47,48,49]. In the “|1〉, |2〉, |3〉” basis, 

the modified rotating wave Hamiltonian for the three-level system in Figure 4.21 is: 
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�̂̃�𝐷 =
ℏ

2
[

0 0 𝛺𝐿

0 2(𝛥𝐿−𝛥𝑅𝑃) 𝛺𝑅𝑃

𝛺𝐿
∗ 𝛺𝑅𝑃

∗ −2𝛥𝑅𝑃

] (4.14) 

while the decay and source matrices are: 

�̇̂̃�𝐷(𝐷𝐸𝐶𝐴𝑌) = −
𝑖ℏ

2
[
𝛤12

′ 0 0
0 𝛤21 0
0 0 𝛤3𝑅

] (4.15) 

�̇̂̃�𝐷(𝑆𝑂𝑈𝑅𝐶𝐸) =

[
 
 
 
 (𝛤21�̃�𝐷(22) +

𝛤3𝑅�̃�𝐷(33)

2
) 0 0

0 (𝛤12
′ �̃�𝐷(11) +

𝛤3𝑅�̃�𝐷(33)

2
) 0

0 0 0]
 
 
 
 

 (4.16) 

 

4.7.2 Density Matrix of Gain Medium 

The gain cell contains naturally-occurring Rb vapor, which contains the 85Rb and 87Rb 

isotopes. Both isotopes are modeled as four-level systems, as shown in Figure 4.22. For 85Rb, |1〉 

and |2〉 are the F=2 and F=3 hyperfine states, respectively, in the 5S1/2 manifold; |3〉 is the entire 

5P1/2 manifold; |4〉 is the entire 5P3/2 manifold. For 87Rb, |1〉 and |2〉 are the F=1 and F=2 hyperfine 

states, respectively, in the 5S1/2 manifold; |3〉 is the 5P1/2 manifold; |4〉 is the 5P3/2 manifold. The 

buffer gas causes rapid dephasing in both isotopes, thus producing homogeneous broadening of 

~5-10 GHz. The simulation therefore does not consider the hyperfine sublevels within the 5P1/2 

and 5P3/2 manifolds, which are separated by a few hundred MHz or less. The width of the buffer 

gas-induced broadening is of the same order of magnitude as 𝛥12, so that the optical pump excites 

atoms from both states |1〉 and |2〉 into state |4〉. The strengths of the |1〉 → |4〉 and |2〉 → |4〉 

transitions (i.e. their Rabi frequencies) are assumed to be equal for simplicity, and denoted as 𝛺𝑂𝑃. 
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The |1〉 → |3〉 and |2〉 → |3〉 transitions, which are coupled by the intra-cavity lasing beam itself, 

are also assumed to be equal in strength, labeled as 𝛺𝐿. 

 
Fig. 4.22: All relevant energy levels, optical fields, and decay rates  

used in the density matrix numerical model of the gain medium 

 

The Optical Bloch equation for the density matrix of the gain medium, �̂̃�𝐺, is: 

�̇̂̃�𝐺 = −
𝑖

ℏ
[�̂̃�𝐺 , �̂̃�𝐺] + �̇̂̃�𝐺(𝐷𝐸𝐶𝐴𝑌) + �̇̂̃�𝐺(𝑆𝑂𝑈𝑅𝐶𝐸) + �̇̂̃�𝐺(𝐵𝑈𝐹𝐹𝐸𝑅) (4.17) 

where the “G” subscript denotes “Gain”. The “buffer” term, which does not appear in the dip 

medium, accounts for the buffer gas induced dephasing between different states. The buffer gas is 

assumed to broaden all dephasing rates by the same amount, denoted as 𝛤𝑑, so that in the “|1〉, |2〉, 

|3〉, |4〉” basis: 
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�̇̂̃�𝐺(𝐵𝑈𝐹𝐹𝐸𝑅) = −𝛤𝑑

[
 
 
 
 

0 �̃�𝐺(12)

�̃�𝐺(21) 0

�̃�𝐺(13) �̃�𝐺(14)

�̃�𝐺(23) �̃�𝐺(24)

�̃�𝐺(31) �̃�𝐺(32)

�̃�𝐺(41) �̃�𝐺(42)

0 �̃�𝐺(34)

�̃�𝐺(43) 0 ]
 
 
 
 

 (4.18) 

The modified rotating wave Hamiltonian for the four-level system shown in Figure 4.22 is: 

�̂̃�𝐺 =
ℏ

2
[
 
 
 

0 0
0 2𝛥12

𝛺𝐿 𝛺𝑂𝑃

𝛺𝐿 𝛺𝑂𝑃

𝛺𝐿
∗ 𝛺𝐿

∗

𝛺𝑂𝑃
∗ 𝛺𝑂𝑃

∗
−2𝛥𝐿 0

0 −2𝛥𝑂𝑃]
 
 
 
 (4.19) 

while the decay and source matrices are: 

�̇̂̃�𝐺(𝐷𝐸𝐶𝐴𝑌) = −
𝑖ℏ

2
[

𝛤12 0
0 𝛤21

0 0
0 0

0 0
0 0

(𝛤31 + 𝛤32 + 𝛤34) 0

0 (𝛤41 + 𝛤42 + 𝛤43)

] (4.20) 

�̇̂̃�𝐺(𝑆𝑂𝑈𝑅𝐶𝐸)

=

[
 
 
 
 
 
 𝛤21�̃�𝐺(22) +

(𝛤3𝑅�̃�𝐺(33) + 𝛤4𝑅 �̃�𝐺(44))

2
0

0 𝛤12�̃�𝐺(11) +
(𝛤3𝑅�̃�𝐺(33) + 𝛤4𝑅�̃�𝐺(44))

2

0 0
0 0

0 0
0 0

𝛤43�̃�𝐺(44) 0

0 𝛤34�̃�𝐺(33)]
 
 
 
 
 
 

 

(4.21) 

 

4.7.3 Effective Susceptibility of the Gain and Dip Cells 

The dip cell contains only the 85Rb isotope, in which the lasing beam couples to the |1〉 →

|3〉 transition. Therefore, the susceptibility of the lasing beam in the dip cell is: 

𝜒𝐷 = (�̃�31(𝐷))
ℏc𝑛𝐷

𝐼𝑆𝐴𝑇13(𝐷)𝛺𝐿(𝐷)
(
𝛤31(𝐷)

2
)

2

 (4.22) 

where 𝑛𝐷 is the number density of atoms in the dip cell, and 𝐼𝑆𝐴𝑇13(𝐷) is the effective saturation 

intensity of the |1〉 → |3〉 transition in 85Rb. This quantity is calculated by averaging the saturation 
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intensities of all constituent Zeeman transitions for σ+ or σ- excitation [50] (the laser polarization 

is linear, which consists of equal parts of σ+ and σ-). 𝐼𝑆𝐴𝑇13 is found to be 8.347 mW/cm2 [43].  

Due to buffer gas induced broadening in the gain cell, the lasing beam interacts with the 

|1〉 → |3〉 and |2〉 → |3〉 transitions, in both the 85Rb and 87Rb isotopes. The susceptibility of the 

lasing beam to the 85Rb atoms in the gain cell, 𝜒𝐺(85), is therefore related to the density matrix 

through the following relation: 

𝜒𝐺(85) = (�̃�31(85))
ℏc𝑛85

𝐼𝑆𝐴𝑇13(85)𝛺𝐿(85)
(
𝛤31(85)

2
)

2

+ (�̃�32(85))
ℏc𝑛85

𝐼𝑆𝐴𝑇23(85)𝛺𝐿(85)
(
𝛤32(85)

2
)

2

 (4.23) 

where the “85” subscript refers to the 85Rb isotope. 𝑛85 is the number density of 85Rb atoms; 

𝐼𝑆𝐴𝑇13(85) and 𝐼𝑆𝐴𝑇23(85) are the effective saturation intensities of the |1〉 → |3〉 and |2〉 → |3〉 

transitions, respectively, in 85Rb, and are equal to 8.347 mW/cm2 and 6.283 mW/cm2, respectively. 

A similar expression applies to 𝜒𝐺(87) [51], the susceptibility of the lasing beam to the 87Rb atoms, 

with 𝐼𝑆𝐴𝑇13(87) and 𝐼𝑆𝐴𝑇23(87) equaling 7.011 mW/cm2 and 4.531 mW/cm2, respectively. The total 

susceptibility in the gain cell, 𝜒𝐺 , is therefore: 

𝜒𝐺 = 0.72𝜒𝐺(85) + 0.28𝜒𝐺(87) (4.24) 

where 72% and 28% are the natural abundance of these isotopes.  The effective susceptibility 

experienced by the intra-cavity lasing beam, 𝜒𝐿, is the sum of the gain and dip susceptibilities, 

weighted by their respective cell lengths. 

𝜒𝐿(𝜔) =
𝐿𝐺

𝐿𝑜
𝜒𝐺(𝜔) +

𝐿𝐷

𝐿𝑜
𝜒𝐷(𝜔) (4.25) 

where the “L” subscript is for “Lasing”. Here, 𝐿𝑜 is round-trip cavity length, and 𝐿𝐺  and 𝐿𝐷 are 

the distances over which the intra-cavity lasing beam propagates through the gain cell and dip 

cells, respectively, in one round trip. 



107 

 

4.7.4 Flow Chart of Algorithm 

Figure 4.23 is a flow chart of the algorithmic procedure used in the numerical calculation 

of the DPAL-Raman system [52,53]. The algorithm begins at time 𝑡 = 0 by “guessing” the lasing 

detuning and coupling strength, 𝛥𝐿 and 𝛺𝐿, and plugs these initial values into the gain and dip 

Hamiltonians, �̂̃�𝐺  and �̂̃�𝐷. The combined Hamiltonian is then used to solve the Optical Bloch 

equations in the steady state, which yield the density matrix components of the gain and dip cells. 

From this, we calculate 𝜒𝐿, which is plugged into the single-mode laser equations: 

𝑑𝜑𝐿

𝑑𝑡
= (𝛺𝐶 − 𝜔𝐿) −

𝜒𝐿(𝑅)

2
𝜔𝐿 (4.26) 

𝑑𝐸𝐿

𝑑𝑡
= −

𝜔𝐿𝐸𝐿

2𝑄
−

𝜒𝐿(𝐼)𝐸𝐿

2
𝜔𝐿 (4.27) 

where 𝜑𝐿, 𝜔𝐿, and 𝐸𝐿 are the phase, frequency, and amplitude, respectively, of the laser output. 𝑄 

and 𝛺𝐶  are the empty cavity quality factor and resonance frequency, respectively, and 𝜒𝐿 ≡

𝜒𝐿(𝑅) + 𝑖𝜒𝐿(𝐼). The algorithm calculates 𝛥𝜑𝐿 and 𝛥𝐸𝐿, the change in phase and amplitude, 

respectively, over a time step of 𝛥𝑡, so that 𝛥𝜑𝐿 = 𝛥𝑡 (
𝑑𝜑𝐿

𝑑𝑡
), and 𝛥𝐸𝐿 = 𝛥𝑡 (

𝑑𝐸𝐿

𝑑𝑡
). The new values 

of 𝜑𝐿 and 𝐸𝐿 result in new values of 𝛥𝐿 and 𝛺𝐿. The algorithm then reaches the “stepping decision” 

to determine if the algorithm has reached a steady-state solution. If the values of 𝛥𝐿 and 𝛺𝐿 are 

determined to have converged sufficiently, then the algorithm is complete. Otherwise, the 

procedure repeats for the next time interval 𝛥𝑡. After enough iterations, the density matrices, cavity 

parameters, and intra-cavity beam parameters eventually reach a steady-state and self-consistent 

solution. 
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Fig. 4.23: Flow chart illustrating the algorithmic procedure for numerically  

solving the DPAL-Raman superluminal laser. After enough iterations,  

the algorithm reaches a self-consistent steady-state solution. 

 

4.7.5 Comparison of Experimental and Numerical Results 

The algorithmic procedure from Section 4.7.4 is used to determine the steady-state density 

matrices (and therefore steady-state values of 𝜒𝐿(𝑅) and 𝜒𝐿(𝐼)) for one set of experimental 

parameters. In order to compare the experimental results from Section 4.6 to the numerical model, 

we calculate numerically (using the code included in Appendix A) the DPAL output power for 

101 different values of 𝛿, centered at 𝛿 = 0. The simulation parameters correspond to the 

experimental parameters documented in the caption of Figure 4.19. The experimental and 

theoretical plots of DPAL output power versus 𝛿 are shown in Figures 4.24(a) and 4.24(b), 

respectively. 
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Fig. 4.24: (a) Experimentally-measured DPAL output power versus two-photon detuning 𝛿; 

(b) Numerically-calculated DPAL output power versus 𝛿 

 

There appears to be reasonable qualitative and quantitative agreement between the 

numerical model and the experimental data. The depth and width of the Raman depletion both 

increase monotonically with increasing Raman probe power, with values matching reasonably well 

between theory and experiment. However, there are two main discrepancies to note: First, the 

experimental data appear to have a higher degree of asymmetry than the numerical model, 

especially for higher Raman probe power. Second, the calculation shows the dip shifting towards 

the left with increasing Raman probe power, whereas the dip location is roughly constant in the 

experimental data. 

 There are a few potential sources of these discrepancies. First, the numerical model for the 

atomic transitions is somewhat simplified, for both the DPAL gain and Raman depletion. 

Specifically, states |1〉, |2〉, |3〉, and |4〉 each contain several Zeeman sub-levels, but are treated as 

a single state. Since the DPAL gain is quite broad, ignoring these details is not likely to affect the 

numerically-calculated DPAL gain spectrum significantly. Furthermore, during this experiment, 

the parameters affecting DPAL gain were held at constant values. Thus, simplification in the 
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modeling of the DPAL gain is unlikely the source of the discrepancy. In contrast, the Raman 

depletion process has a much narrower bandwidth, and the details of the relevant energy levels 

may affect the spectral shapes of the dip. The number of Zeeman sublevels in a hyperfine state is 

[18]: 

𝑁𝑍𝐸𝐸𝑀𝐴𝑁 = 2𝐹 + 1 (4.28) 

where 𝐹 = |𝐹 | = |𝐼 + 𝐽 |, where 𝐼  is the nuclear spin and 𝐽 = �⃗� + 𝑆  is the total electron spin, where 

�⃗�  is electron orbital angular momentum and 𝑆  is electron spin angular momentum. Therefore, in 

the 85Rb isotope (in which |𝐼 | = 5
2⁄ ), states |1〉 (S1/2,F=2) and |2〉 (S1/2,F=3) in the dip cell have 

Zeeman degeneracies of 5 and 7, respectively, while state |3〉 (the entire P1/2 manifold, which 

contains F=2 and F=3 hyperfine-split levels) has a total of 12 Zeeman sublevels. State |4〉, which 

is the entire P3/2 manifold, contains all four (F=1,2,3,4) hyperfine levels, and therefore has a total 

of 24 Zeeman sublevels. There are thus 48 individual Zeeman sublevels in this “three-level” 

system. In the algorithm, the matrix which solves this system has a size of N2×N2, where N is the 

number of energy levels. Thus, accounting for every Zeeman sublevel would increase the size of 

this matrix by a factor of (48/3)4=65536. Given that our algorithm is iterative, such an increase 

would enormously inflate the computation time, thus making it very difficult to explore the entire 

parameter space. 

 It is also important to note that the numerical model assumes that the Raman pump couples 

only to the |2〉 → |3〉 transition, and not to the |1〉 → |3〉 transition, while the Raman probe couples 

only to the |1〉 → |3〉 transition, and not the |2〉 → |3〉 transition. In reality, both the Raman pump 

and Raman probe couple to both of these transitions, and the difference between the degree of 

coupling to the |1〉 → |3〉 transition and the |2〉 → |3〉 transition depends on their respective 
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detunings relative to state |3〉. However, developing codes that go beyond this approximation is 

difficult, because it is no longer possible to make the rotating wave approximation, and one must 

take into account higher order harmonics of the beat note between the Raman pump and the Raman 

probe [54]. This approximation may account for the absence of asymmetry in the theoretical 

results. In the near future, we will develop a more comprehensive code that will not make these 

approximations and use it to determine whether the discrepancies between experiment and theory 

can be eliminated. 

 

4.7.6 Using the Numerical Model to Calculate Superluminal Enhancement 

In order to calculate the sensitivity of the DPAL output frequency to cavity length change, 

the algorithm solves the superluminal laser frequency, 𝑓𝐿, for 101 different values of 𝐿, centered 

at 𝐿𝑜. Figure 4.25(a) shows 𝛥𝑓𝐿(≡ 𝑓𝐿 − 𝑓𝑜) versus 𝛥𝐿(≡ 𝐿 − 𝐿𝑜), for the same values of Raman 

pump power as used in the experiment. The enhancement factor [Figure 4.25(b)] is simply the 

factor by which the slope of 𝛥𝑓𝐿 𝛥𝐿⁄  is greater than the slope of the dotted line in Figure 4.25(a), 

which represents the empty-cavity sensitivity. As expected, the superluminal enhancement 

becomes more pronounced with increasing values of Raman probe power. For example, a Raman 

probe power of 24 mW yields an enhancement factor as high as 190(=102.28). In principle, the 

enhancement factor can be several orders of magnitude greater than unity with the proper choice 

of experimental parameters. 
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Fig. 4.25: (a) Frequency shift versus cavity length change for various values of Raman probe 

power. The dotted line represents change in DPAL output frequency versus cavity length change 

for a conventional laser without Raman depletion; (b): Sensitivity enhancement factors (log 

scale), calculated as the ratio of the slope of 𝛥𝑓𝐿 𝛥𝐿⁄  with Raman depletion to the slope of 

𝛥𝑓𝐿 𝛥𝐿⁄  without Raman depletion (dotted line in Fig. 4.25(a)). 
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4.8 Making a Bi-Directional DPAL 

In this chapter, we have demonstrated a single-direction Diode-Pumped Alkali Laser 

(DPAL) in which the intra-cavity lasing beam experienced Raman depletion. However, for 

practical reasons, a laser interferometer should operate with bi-directionally, with counter-

propagating and spatially-overlapping modes. This is because mirror vibrations and thermal 

fluctuations, as well as other environmental noise sources, cause the round-trip optical path length 

to fluctuate randomly, which in creates “classical noise” in the laser frequency. In a bi-directional 

laser, the clockwise and counter-clockwise frequencies propagate through the same path and 

therefore “see” the same noise, so that the difference between their frequencies is insensitive to 

these random fluctuations. Having a narrow beat note is crucial for device sensitivity, as explained 

in Chapter 2. Therefore, now that we have demonstrated a single-direction superluminal DPAL, 

the next step is to demonstrate a bi-directional superluminal DPAL in which the counter-

propagating modes overlap spatially, and in which one (or both) of the lasing modes experiences 

Raman depletion. 

In the single-mode DPAL, the intra-cavity optical isolator forced single-direction lasing. 

To build the bi-directional DPAL, we therefore removed the isolator from the cavity, as shown in 

Figure 4.26(a). Because the optical pump is incoherent with the intra-cavity lasing beam, the 

clockwise and counter-clockwise gain are equal, regardless of the direction in which the optical 

pump propagates through the gain cell. It turns out that the equal gain created severe mode 

competition between the clockwise and counter-clockwise directions. This led to a high degree of 

instability, which is made evident by Figure 4.26(b), which shows the clockwise and counter-

clockwise output power monitored simultaneously over a ten-second time period. Whenever the 

clockwise mode is “on”, the counter-clockwise mode is “off”, and vice versa. Therefore, the 
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counter-propagating modes cannot and do not co-exist. It turns out also that there was also 

transverse mode competition for certain experimental parameters; in other words, the lasing modes 

were sometimes in the TEM00 spatial mode, but were also sometimes in the TEM10, TEM01, 

TEM20, etc. modes.  

 
Fig. 4.26: (a) Schematic of bi-directional DPAL; (b) Mode competition between the  

counter-propagating modes, showing that only one mode can lase at a time. In  

addition, the mode that is lasing is highly unstable due to this mode competition. 

 

Unfortunately, there was no literature at the time regarding mode competition in DPALs. 

This likely due to the combination of the fact that DPALs were still a relatively new technology 

(the first experimental demonstration of a DPAL was published in 2003 [35]), and, more 

importantly, the fact that DPALs were being developed mainly as a method for efficiently 

converting high-M2 (and therefore highly-divergent) light into M2≅1 (diffraction-limited 

divergence) light [36,37,38,39,40,41]. For this reason, all of the prior DPAL studies used two-

mirror cavities, which do not have “clockwise” and “counter-clockwise” modes, and therefore, in 

which directional mode competition is not even possible. Due to the inability for the DPAL to lase 
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bi-directionally in a stable manner, we concluded that if we want to demonstrate a stable bi-

directional laser interferometer, we need to switch gain media altogether. Although the DPAL-

Raman system turned out to not be ideal for our application, the experiments thereof were still 

instructive in understanding how to create a superluminal laser, and in demonstrating 

experimentally an ultra-narrowband dip in a laser with corresponding sensitivity enhancement. 
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CHAPTER 5 

RAMAN LASER EXPERIMENTS 

 

5.1 Introduction to the Raman Laser 

 Fundamentally, directional mode competition in the DPAL occurred because there was 

only one gain cell in the cavity, so that the clockwise and counter-clockwise modes used the same 

atoms to achieve gain [26]. In other words, the counter-propagating modes “competed” for the 

same gain atoms, which created instability and rendered the DPAL incapable of lasing bi-

directionally. Therefore, to avoid the problem of mode competition, we would like to use a gain 

medium in which the clockwise and counter-clockwise modes use different atoms for gain. 

Furthermore, we do not want the clockwise lasing beam to interact with the counter-clockwise 

gain cell, and vice versa. 

Recall from Chapter 4 that Raman resonance between counter-propagating beams occurs 

only in the near-zero-velocity atoms in Doppler-broadened atomic vapor; more specifically, only 

an atom with a small enough Doppler shift to still be within the “Raman interaction linewidth”, 

𝛤𝑅𝐴𝑀𝐴𝑁, can be two-photon resonant with a counter-propagating beam. Therefore, if 𝛤𝐷𝑂𝑃𝑃𝐿𝐸𝑅 (the 

FWHM Doppler linewidth) is approximately 560 MHz while 𝛤𝑅𝐴𝑀𝐴𝑁 is approximately 1 MHz 

(which are typical values), then only 1/560th of atoms would be able to mediate two-photon 

resonance between counter-propagating beams. On the other hand, all velocity groups of atoms 

can mediate two-photon resonance between co-propagating beams. Therefore, the output of a laser 

using Raman gain in atomic vapor would co-propagate with the Raman pump, since gain in the 

co-propagating direction would far exceed that in the counter-propagating direction. Figure 5.1(a) 
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shows the energy levels and optical fields that would be involved in a single-direction version of 

this laser. The optical pump provides an effective decay rate from state |2〉 to state |1〉, thus 

enabling us to model this Raman laser as a three-level system, as shown in Figure 5.1(b). In other 

words, the optical pump creates “Raman population inversion” between states |1〉 and |2〉, which 

would otherwise have roughly equal populations in thermal equilibrium. A near-resonant Raman 

pump on the |1〉 → |3〉 transition (with detuning of 𝛥) creates two-photon gain on the |2〉 → |3〉 

transition in the co-propagating direction. A laser is made by inserting this medium into a resonant 

cavity. 

 
Fig. 5.1: (a) Energy levels and optical fields involved in a single-direction Raman laser; (b) 

equivalent three-level system in which the optical pump is treated as a decay rate 

 

We can make a bi-directional Raman laser by using one gain cell for the clockwise 

direction and another gain cell for the counter-clockwise direction. In principle, there are many 

energy configurations which could accomplish this goal; in Figure 5.2, the clockwise lasing beam 

has positive detuning (𝛥𝐶𝑊) relative to the |1〉 → |3〉 transition, while the counter-clockwise gain 

cell has negative detuning (𝛥𝐶𝐶𝑊) relative to the |2〉 → |3〉 transition. With this choice of 𝛥𝐶𝑊 and 

𝛥𝐶𝑊, the counter-propagating lasing beams are significantly detuned from one another (~5 GHz 

apart), which provides an additional benefit: In the Helium-Neon laser gyroscope, which is 
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currently the standard optical gyroscope used for the highest-precision rotation measurements, the 

counter-propagating lasing modes are degenerate in frequency. It is well-known [55,56,57] that in 

degenerate laser gyroscopes, backscattering from optical surfaces causes the counter-propagating 

frequencies to lock to one another other, which is a significant experimental issue. The non-

degeneracy of the mode frequencies in the Raman laser circumvents this issue, alleviating the need 

to use dithering (or other techniques) to prevent mode locking. 

 
Fig. 5.2: (a) One example of the energy levels, optical fields, and effective decay rates that could 

be used in the clockwise and; (b) counter-clockwise gain cells of a bi-directional Raman laser 

 

 To make a superluminal Raman laser gyroscope, we propose a laser in which Raman gain 

is created in the 85Rb isotope, while Raman depletion of the lasing beam is produced in the 87Rb 

isotope. Since naturally-occurring rubidium is composed of 72% 85Rb and 28% 87Rb, this allows 

us to use one hybrid gain/dip cell for each direction, which significantly reduces the number of 

optical components (beam splitters, etc.) needed, which thus reduces intra-cavity loss and more 

easily enables miniaturization. It is also cheaper, since isotopically-pure rubidium is more 

expensive than naturally-occurring rubidium. The relevant 87Rb and 85Rb energy levels are shown 

in Figure 5.3. Note that the hyperfine splitting of the S1/2 state is 3.036 GHz in 85Rb and 6.835 GHz 
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in 87Rb. These data were obtained from References 50 and 51, which contain much more 

comprehensive data on these isotopes. 

 
Fig. 5.3: (a) Relevant energy levels in 85Rb and; (b) 87Rb. 

 

Figure 5.4 is one example configuration of the optical fields which could be used for 

creating a single-direction superluminal Raman laser. In this particular configuration, the detuning 

of the lasing beam relative to the gain transition (|285〉 → |385〉) is positive, while its detuning 

relative to the dip transition (|187〉 → |387〉) is negative. 



120 

 

 
Fig. 5.4: Schematic of optical fields used in a superluminal Raman laser 

 

Before attempting to build a bi-directional, superluminal Raman laser, we first need to 

understand the behavior of a single-direction, non-superluminal Raman laser. We therefore built 

and characterized such a system; Figure 5.5(a) shows a schematic of this laser, with the associated 

energy levels and optical fields shown in Figure 5.5(b), and the effective three-level simplified 

system shown in Figure 5.5(c). Although the standard Raman laser makes use of only the 85Rb 

isotope, we still used a vapor cell with natural rubidium, since we would eventually need to utilize 

87Rb for Raman depletion. The laser cavity was a square with a perimeter of one meter. Because 

all four mirrors were flat, an intra-cavity lens with a focal length of at least 250 mm (one quarter 

the roundtrip length) was required to stabilize the cavity [26]; the lens we used had a focal length 

of 750 mm. The minimum waist size of the lasing mode occurs exactly opposite the location of 

the lens; we placed a circular aperture (iris) at that location to spatially filter out all transverse 
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modes besides the TEM00 mode. It turns out that this iris helped tremendously in stabilizing the 

laser output and ensuring single-transverse-mode operation. 

 
Fig. 5.5: (a) Schematic of single-direction Raman laser using rubidium vapor as  

gain; (b) associated energy levels and optical fields; (c) effective three-level  

system treating the optical pump as a decay rate 
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5.2 Mode Spacing in the Raman Laser 

 We first measured the laser output power while scanning the Raman pump detuning 

(denoted as 𝛥 in Figure 5.5), keeping all other parameters constant. The purpose of this experiment 

was to determine the range of 𝛥 over which the Raman laser could operate. A small piece of the 

Raman pump was diverted to an outside rubidium vapor cell, in which the saturated absorption 

profile was measured, which provided a frequency reference. Figure 5.6 shows a typical 

oscilloscope image obtained from this experiment; the orange scan is the saturated absorption 

profile (labeled with the corresponding transitions), and the blue scan is the laser output power. 

Figure 5.6(b), which is a zoomed-in version of Figure 5.6(a), labels the individual lasing modes. 

This data is important because it shows the values of 𝛥 over which the Raman laser operates, which 

we must understand in order to design the superluminal version of this laser. 

 
Fig. 5.6: (a) Oscilloscope scan showing Raman lasing modes (blue) with corresponding  

saturated absorption profile (orange) used as a frequency reference; (b) zoomed-in  

version of (a), with the individual modes labeled. 
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 Before looking at the data, we naïvely expected that because the refractive index is very 

close to unity, the spacing between neighboring lasing modes (the so-called laser FSR) should be 

equal to 𝑐 𝐿⁄ , where 𝐿 is the round-trip cavity length. Thus, with a cavity perimeter of one meter, 

the laser FSR should be 300 MHz. Using the saturated absorption profile as a frequency reference, 

we found the laser FSR to be significantly less than 300 MHz, and furthermore, we found it was 

not constant. In other words, the spacing between modes 1 and 2 is different from the spacing 

between modes 2 and 3, which is different from the spacing between modes 3 and 4, etc. In order 

to characterize this effect, we took many oscilloscope images (the same type of data as shown in 

Figure 5.6) at four different cell temperatures, five different optical pump powers, and two 

different Raman pump powers, yielding a total of 4×5×2=40 different combinations of 

experimental parameters. Lasing occurred for 29 of these 40 combinations of parameters, for 

which we documented each individual mode with its corresponding Raman pump detuning (𝛥). 

The data are shown in Table 5.1. 

 

Data Set Temp (⁰C) O.P. Power (mW) R.P. Power (mW) Mode # Δ (MHz) 

1 80.2 3.82 8.90 1 690 

1 80.2 3.82 8.90 2 945 

2 80.2 5.95 8.90 1 692 

2 80.2 5.95 8.90 2 948 

3 80.2 11.20 8.90 1 777 

3 80.2 11.20 8.90 2 1043 

4 80.2 23.30 8.90 1 470 

4 80.2 23.30 8.90 2 715 

4 80.2 23.30 8.90 3 975 

5 80.2 48.50 8.90 1 497 

5 80.2 48.50 8.90 2 746 

5 80.2 48.50 8.90 3 1014 

5 80.2 48.50 8.90 4 1292 

6 80.2 11.20 3.75 1 460 
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6 80.2 11.20 3.75 2 701 

7 80.2 23.30 3.75 1 462 

7 80.2 23.30 3.75 2 703 

7 80.2 23.30 3.75 3 963 

8 80.2 48.50 3.75 1 371 

8 80.2 48.50 3.75 2 612 

8 80.2 48.50 3.75 3 864 

9 91.2 3.82 8.90 1 768 

9 91.2 3.82 8.90 2 991 

10 91.2 5.95 8.90 1 826 

10 91.2 5.95 8.90 2 1060 

10 91.2 5.95 8.90 3 1309 

11 91.2 11.20 8.90 1 639 

11 91.2 11.20 8.90 2 850 

11 91.2 11.20 8.90 3 1083 

11 91.2 11.20 8.90 4 1336 

11 91.2 11.20 8.90 5 1591 

12 91.2 23.30 8.90 1 466 

12 91.2 23.30 8.90 2 632 

12 91.2 23.30 8.90 3 846 

12 91.2 23.30 8.90 4 1087 

12 91.2 23.30 8.90 5 1340 

12 91.2 23.30 8.90 6 1585 

13 91.2 48.50 8.90 1 566 

13 91.2 48.50 8.90 2 755 

13 91.2 48.50 8.90 3 985 

13 91.2 48.50 8.90 4 1234 

13 91.2 48.50 8.90 5 1489 

13 91.2 48.50 8.90 6 1733 

14 91.2 5.95 3.75 1 650 

14 91.2 5.95 3.75 2 861 

15 91.2 11.20 3.75 1 637 

15 91.2 11.20 3.75 2 853 

15 91.2 11.20 3.75 3 1093 

16 91.2 23.30 3.75 1 413 

16 91.2 23.30 3.75 2 590 

16 91.2 23.30 3.75 3 799 

16 91.2 23.30 3.75 4 1030 

17 91.2 48.50 3.75 1 288 

17 91.2 48.50 3.75 2 422 
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17 91.2 48.50 3.75 3 610 

17 91.2 48.50 3.75 4 852 

17 91.2 48.50 3.75 5 1085 

18 104.1 5.95 8.90 1 917 

18 104.1 5.95 8.90 2 1104 

18 104.1 5.95 8.90 3 1307 

19 104.1 11.20 8.90 1 841 

19 104.1 11.20 8.90 2 1023 

19 104.1 11.20 8.90 3 1223 

19 104.1 11.20 8.90 4 1431 

20 104.1 23.30 8.90 1 706 

20 104.1 23.30 8.90 2 859 

20 104.1 23.30 8.90 3 1050 

20 104.1 23.30 8.90 4 1261 

20 104.1 23.30 8.90 5 1478 

20 104.1 23.30 8.90 6 1691 

21 104.1 48.50 8.90 1 621 

21 104.1 48.50 8.90 2 739 

21 104.1 48.50 8.90 3 917 

21 104.1 48.50 8.90 4 1123 

21 104.1 48.50 8.90 5 1336 

21 104.1 48.50 8.90 6 1551 

21 104.1 48.50 8.90 7 1753 

21 104.1 48.50 8.90 8 1931 

22 104.1 11.20 3.75 1 755 

22 104.1 11.20 3.75 2 932 

22 104.1 11.20 3.75 3 1128 

23 104.1 23.30 3.75 1 493 

23 104.1 23.30 3.75 2 615 

23 104.1 23.30 3.75 3 759 

23 104.1 23.30 3.75 4 943 

23 104.1 23.30 3.75 5 1132 

23 104.1 23.30 3.75 6 1338 

24 104.1 48.50 3.75 1 544 

24 104.1 48.50 3.75 2 677 

24 104.1 48.50 3.75 3 848 

24 104.1 48.50 3.75 4 1047 

24 104.1 48.50 3.75 5 1252 

24 104.1 48.50 3.75 6 1449 

25 117.9 11.20 8.90 1 976 
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25 117.9 11.20 8.90 2 1115 

25 117.9 11.20 8.90 3 1270 

25 117.9 11.20 8.90 4 1428 

25 117.9 11.20 8.90 5 1589 

26 117.9 23.30 8.90 1 905 

26 117.9 23.30 8.90 2 1037 

26 117.9 23.30 8.90 3 1184 

26 117.9 23.30 8.90 4 1345 

26 117.9 23.30 8.90 5 1506 

26 117.9 23.30 8.90 6 1667 

26 117.9 23.30 8.90 7 1815 

27 117.9 48.50 8.90 1 755 

27 117.9 48.50 8.90 2 859 

27 117.9 48.50 8.90 3 981 

27 117.9 48.50 8.90 4 1121 

27 117.9 48.50 8.90 5 1278 

27 117.9 48.50 8.90 6 1436 

27 117.9 48.50 8.90 7 1600 

27 117.9 48.50 8.90 8 1755 

27 117.9 48.50 8.90 9 1889 

28 117.9 23.30 3.75 1 921 

28 117.9 23.30 3.75 2 1055 

28 117.9 23.30 3.75 3 1202 

28 117.9 23.30 3.75 4 1356 

29 117.9 48.50 3.75 1 883 

29 117.9 48.50 3.75 2 1011 

29 117.9 48.50 3.75 3 1155 

29 117.9 48.50 3.75 4 1305 

Table 5.1: Documented here is the detuning of each individual lasing mode, for 29 different 

combinations of cell temperature, optical pump power, and Raman pump power. 

 

After tabulating this data, we wanted to see if there was a relationship between lasing FSR 

(𝐹𝑆𝑅𝐿) and Raman pump detuning (𝛥). To do this, we plotted the average detuning of two 

neighboring modes versus their difference. For example, if two consecutive modes have detunings 

of 500 MHz and 600 MHz, we would say “at 𝛥=550 MHz, 𝐹𝑆𝑅𝐿=100 MHz”. Figure 5.7 is a plot 

of 𝐹𝑆𝑅𝐿 versus 𝛥, corresponding to the data from Table 5.1. 
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Fig. 5.7: Mode spacing in the Raman laser as a function of Raman pump detuning. 

Every data point from all 29 data sets is plotted here. 

 

Figure 5.7 by itself does not give much information, except that it appears to contain four 

separate curves. It turns out that these curves correspond to the four different cell temperatures 

used in this experiment, as shown in Figure 5.8.  
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Fig. 5.8: Mode spacing in the Raman laser as a function of Raman pump detuning, sorted by 

temperature. Evidently the mode spacing depends on detuning and temperature. 

 

 Therefore, the laser FSR appears to depend on the cell temperature and the Raman pump 

detuning. The most trivial explanation for the reduction of laser FSR would be that if a cavity is 

filled with a medium of index 𝑛, the optical path length is increased by a factor of 𝑛 relative to the 

empty cavity, thus reducing 𝐹𝑆𝑅𝐿 by the same factor relative to 𝐹𝑆𝑅𝐸𝐶; but that would mean that 

if the laser FSR is 150 MHz, then 𝑛 = 2. This is completely unrealistic, since 90% of cavity is free 

space while the other 10% is dilute atomic vapor. The more plausible explanation is that dispersion 

is the source of this FSR narrowing, which we show by considering a medium where the index 𝑛 

has the following linear dispersion relation in the vicinity of frequency 𝑓0: 

𝑛(𝑓) = 𝑛(𝑓𝑜) +
𝑑𝑛

𝑑𝑓
· (𝑓 − 𝑓𝑜) ≡ 𝑛𝑜 + 𝛼 · (𝑓 − 𝑓𝑜) (5.1) 
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Fig. 5.9: Dispersion relation in which index is linearly proportional to frequency 

 

This dispersion relation can be expressed as a relationship between 𝜆 and 𝑓: 

𝜆 =
𝑐

𝑛⁄

𝑓
=

𝑐

𝑓
·

1

𝑛𝑜 + 𝛼 · (𝑓 − 𝑓𝑜)
=

𝑐

𝑛𝑜𝑓 + 𝛼𝑓2 − 𝛼𝑓𝑜𝑓
= 𝑐 · [𝛼𝑓2 + (𝑛𝑜 − 𝛼𝑓𝑜)𝑓]−1 (5.2) 

so that: 

𝑑𝜆

𝑑𝑓
= −𝑐 ·

2𝛼𝑓 − 𝛼𝑓𝑜 + 𝑛𝑜

[𝛼𝑓2 + (𝑛𝑜 − 𝛼𝑓𝑜)𝑓]2
 (5.3) 

Therefore, for values of 𝛥𝑓 ≪ 𝑓𝑜 (and 𝛥𝜆 ≪ 𝜆): 

𝛥𝜆 = −𝑐 ·
2𝛼𝑓 − 𝛼𝑓𝑜 + 𝑛𝑜

[𝛼𝑓2 + (𝑛𝑜 − 𝛼𝑓𝑜)𝑓]2
· 𝛥𝑓 (5.4) 

𝛥𝑓 ≪ 𝑓𝑜 also means that 𝑓 = 𝑓𝑜 + 𝛥𝑓 ≅ 𝑓𝑜 so that: 

𝛥𝜆 = −𝑐 ·
𝛼𝑓𝑜 + 𝑛𝑜

(𝑛𝑜𝑓𝑜)2
· 𝛥𝑓 (5.5) 

The mode number, 𝑚, is the number of wavelengths that fit into one cavity round trip. 

Thus, 𝑚 =
𝐿

𝜆
, or 𝜆 =

𝐿

𝑚
. Therefore: 
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𝑑𝜆

𝑑𝑚
=

−𝐿

𝑚2
 (5.6) 

so that for values of 𝛥𝑚 ≪ 𝑚: 

𝛥𝜆 =
−𝐿

𝑚2
· 𝛥𝑚 (5.7) 

Equating the right-hand side of Equation 5.5 and the right-hand side of Equation 5.7 then yields: 

𝛥𝑓 =
𝐿

𝑚2𝑐
·

(𝑛𝑜𝑓𝑜)
2

𝛼𝑓𝑜 + 𝑛𝑜
· 𝛥𝑚 (5.8) 

𝛥𝑚 = 1 for consecutive modes, so that the dispersive-cavity free spectral range (𝐹𝑆𝑅𝐷𝐶) is: 

𝐹𝑆𝑅𝐷𝐶 =
𝐿

𝑚2𝑐
·

(𝑛𝑜𝑓𝑜)
2

𝛼𝑓𝑜 + 𝑛𝑜
=

𝑐

𝐿
·

1

𝛼𝑓𝑜 + 𝑛𝑜
=

𝐹𝑆𝑅𝐸𝐶

𝛼𝑓𝑜 + 𝑛𝑜
=

𝐹𝑆𝑅𝐸𝐶

(
𝑑𝑛
𝑑𝑓

𝑓𝑜) + 𝑛𝑜

 (5.9) 

where 𝐹𝑆𝑅𝐸𝐶  is the empty cavity free spectral range. In the non-dispersive limit (
𝑑𝑛

𝑑𝑓
= 0), the FSR 

is reduced by a factor of 𝑛𝑜 relative to that of the empty cavity, as we would expect. Furthermore, 

we use Equation 2.5 to identify the denominator in Equation 5.9 as the definition of “group index”. 

In the case of the Raman laser mode spacing, this would be the group index experienced by a weak 

probe which is always two-photon detuned from the Raman pump. This hypothetical “probe” is 

amplified into a lasing beam only when it meets cavity resonance conditions. We can therefore 

write the laser FSR (𝐹𝑆𝑅𝐿) as a function of the group index seen by this probe: 

𝐹𝑆𝑅𝐿 =
𝐹𝑆𝑅𝐸𝐶

(
𝑑𝑛
𝑑𝑓

𝑓𝑜) + 𝑛𝑜

≡
𝐹𝑆𝑅𝐸𝐶

𝑛𝑔(𝑃𝑅𝑂𝐵𝐸)
 

(5.10) 

In summary, we have concluded that the disparity between the empty cavity FSR and lasing FSR 

is far more likely to result from dispersion rather than much-larger-than-unity values of refractive 

index. More specifically, 𝐹𝑆𝑅𝐿 < 𝐹𝑆𝑅𝐸𝐶  for every data point we took, which implies that 
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𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) > 1, indicating a slow light effect. Figure 5.10 shows 𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) versus 𝛥 at the four 

temperatures, which appears to show a roughly parabolic relationship for a given temperature. 

 
Fig. 5.10: Plot of 𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) as a function of 𝛥, where we use Equation 5.10 

to calculate the group index corresponding to the data from Fig. 5.8 

  

 Figure 5.11 shows the saturated absorption profile of naturally-occurring rubidium; the 

frequencies over which the Raman pump was scanned are in blue, while the lasing beam, which 

was downshifted from the Raman pump by approximately 3.0357 GHz and therefore was always 

between the 𝑆1 2⁄ (𝐹 = 3) → 𝑃1 2⁄  and 𝑆1 2⁄ (𝐹 = 2) → 𝑃1 2⁄  transitions, is shown in red. 
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Fig. 5.11: Saturated absorption profile of naturally-occurring rubidium, with the  

Raman pump (blue) and lasing (red) frequencies highlighted for reference. 

 

 We now make the claim that the roughly parabolic shape of 𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) versus 𝛥 is a result 

of the fact that the “probe” frequency (which is equal to the lasing frequency) is between two 

absorptive resonances. To substantiate this claim, we first recall that, for values of 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) ≪ 1, 

the group index, 𝑛𝑔(𝑃𝑅𝑂𝐵𝐸), takes the following form: 

𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) ≅ 1 +
𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

2
+

𝜔

2

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝜔
≅ 1 +

𝜔

2

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝜔

= 1 +
𝑓

2

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 

(5.11) 

so that: 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
=

2(𝑛𝑔 − 1)

𝑓
 (5.12) 
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We now plot 
𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 versus 𝛥 in Figure 5.12. Since 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) is unitless and 𝑓 has the units of 

Hz, the standard unit for 
𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 is seconds. 

 
Fig. 5.12: Probe dispersion (expressed in femtoseconds) as a function of Raman pump detuning 

 

 For the linear absorption profile, −𝜒𝐼(𝑃𝑅𝑂𝐵𝐸)(𝑓), shown in black in Figure 5.13, the 

Kramers-Kronig relations give the corresponding index, 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)(𝑓) (shown in blue) as well as 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 (shown in yellow). In range of lasing frequencies, the profile of 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 is indeed 

roughly parabolic. On this basis we can therefore conclude that the Kramers-Kronig relations 

governing a weak probe at the lasing frequency are likely to be responsible for the parabolic group 

index. 
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Fig. 5.13: If a probe is between two absorption peaks (shown in black), then, based on 

the Kramers-Kronig relations, it has an index of refraction shown in blue. The  

dispersion is the derivative of the index with respect to frequency, shown in yellow. 

This dispersion is parabolic within this frequency range. 

 

 Since 
𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 (or equivalently 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝛥
)  is parabolic, higher-order nonlinear terms in 

the dispersion profile up to the 
𝑑3𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝛥3
 term are present. Over this frequency range, 

𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)(𝛥) is therefore approximated as: 

𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)(𝛥) ≅ 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)(𝛥𝑜) + (𝛥 − 𝛥𝑜)
𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝛥
+

(𝛥 − 𝛥𝑜)
2

2!

𝑑2𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝛥2

+
(𝛥 − 𝛥𝑜)

3

3!

𝑑3𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝛥3
 

(5.13) 
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The other evident trend is that at a given value of 𝛥, the value of 𝑛𝑔(𝑃𝑅𝑂𝐵𝐸) (and therefore 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
) increases with increasing temperature. This should make sense on an intuitive level 

since refractive index should increase with increasing atomic density, and therefore, so should all 

derivatives of refractive index with respect to frequency. More specifically, in dilute vapor where 

𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) ≪ 1, the value of 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) (and therefore all its derivatives with respect to frequency) 

should be proportional to atomic density. To see if this is the case, we plot 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) as a function 

of temperature using best-fit parabolas fitted to the data in Figure 5.12. Figure 5.14 shows 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 versus temperature for 𝛥=800 MHz, 900 MHz, and 1 GHz. 

 
Fig. 5.14: The temperature dependence of probe dispersion, at three different values of 𝛥. 

 

 Evidently, the value of 
𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 doubles approximately every 10-12 degrees Celsius. 

Since 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) ≪ 1, the value of 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸) should double at the same rate as its derivatives. The 
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empirical vapor pressure of rubidium as a function of temperature is given in References 58 and 

59: 

𝑙𝑜𝑔10(𝑃) = 𝐴 −
𝐵

𝑇
+ 𝐶𝑇 + 𝐷𝑙𝑜𝑔10(𝑇) (5.14) 

where 𝑃 is measured in atmospheres, 𝑇 is measured in Kelvin, 𝐴 = 15.88, 𝐵 = 4530, 𝐶 =

0.0005866, and 𝐷 = −2.991. In dilute vapor, the ideal gas law (𝑃𝑉 = 𝑛𝑘𝐵𝑇) can be used to 

calculate the number density, 𝑛 𝑉⁄ : 

𝑛

𝑉
=

𝑃

𝑘𝐵𝑇
=

10[𝐴−
𝐵
𝑇
+𝐶𝑇+𝐷𝑙𝑜𝑔10(𝑇)]

𝑘𝐵𝑇
 (5.15) 

After converting the pressure from atmospheres to Pascals (the SI unit of pressure, equal to 

newtons per meter squared), we plot the number density versus temperature in Figure 5.15. 

 
Fig. 5.15: Number density of rubidium atoms versus temperature, plotted using Equation 5.15 

 

Evidently the number density also doubles every 10-12 degrees Celsius, which implies that 

𝑑𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)

𝑑𝑓
 (and therefore 𝜒𝑅(𝑃𝑅𝑂𝐵𝐸)) is proportional to number density. Therefore, we conclude 
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that temperature dependence of the laser FSR arises from linear proportionality between number 

density and susceptibility. 

The experiment characterizing the Raman lasing modes was valuable for two reasons: First, 

we were able to see over what range of frequencies the laser would operate. This is important when 

determining the range of detunings over which the Raman pumps which would realistically work. 

Second, understanding that the modes do not have equal spacing is an important practical 

consideration when designing the superluminal laser. During this experiment, we encountered 

some interesting and sometimes unexpected effects; it was important to understand these effects 

before moving on to the next step. 
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5.3 Demonstration of a Highly Subluminal Raman Laser 

 In Section 5.2, we saw reduction in the mode spacing of the Raman laser relative to the 

empty cavity free spectral range, which we determined to be the result of slow light effects arising 

from near-resonant Doppler-broadened dispersion. This dispersion, as mentioned previously, is 

the dispersion that would be seen by a weak probe whose frequency is equal to that of the lasing 

beam. This therefore does not prove that we demonstrated a slow-light laser; in order to do this, 

we would need to show that the lasing beam itself experiences slow light effects. Although we had 

not yet experimentally demonstrated this, we had reason to believe that the Raman laser would in 

fact be a slow-light laser because the Raman interaction linewidth, 𝛤𝑅𝐴𝑀𝐴𝑁, is very narrow (~1 

MHz), which corresponds to steep positive dispersion via the Kramers-Kronig relations. 

 Until now, this thesis has been mainly focused on fast-light lasers, but slow-light lasers 

also have important applications. As opposed to fast-light lasers which are more sensitive to cavity-

length fluctuations by a factor of 𝑛𝑔
−1, slow-light lasers are less sensitive to these fluctuations by 

the same factor. This makes them an ideal candidate for passive frequency stabilization 

applications. Another interesting and potentially very important aspect of the subluminal laser is 

that its quantum noise limited linewidth (the Schawlow-Townes linewidth) is expected to be 

smaller than that of a conventional laser by a factor of 𝑛𝑔
2. This conclusion is based on the 

argument that the energy flow rate is proportional to the group velocity, 𝑣𝑔 [60]. However, as 

shown in Reference 61, this relationship is not valid when the dispersion is anomalous, so that this 

expected dependence of the Schawlow-Townes linewidth on 𝑛𝑔 only applies when 𝑛𝑔 ≥ 1. 

Therefore, a highly subluminal laser has the potential to find important applications in laser 

stabilization as well as high-precision metrology. 
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One of the constraints in using Raman gain to make a slow-light laser is that the linewidth 

of the gain, which should be narrow in order to produce substantial 𝑛𝑔, tends to increase with 

increasing value of peak gain. This dependence can be understood by noting that the effective 

population inversion between the S1/2 hyperfine states, is produced via optically pumping atoms 

from one of these states to the other. This rate of optical pumping serves as an effective decay rate, 

which, along with collisional dephasing rate of the coherence between the S1/2 hyperfine states, 

determines the width of the Raman gain. In order to circumvent this constraint, we, in Reference 

53, proposed a design for a slow-light laser where Raman gain produced in an alkali vapor cell is 

combined with the DPAL gain, which, as shown in Chapter 4, is very strong and broad. In such a 

system, a high output power laser can be produced while still achieving a significant SSF. Aside 

from the obvious utility of high output power, it should also be noted that the Schawlow-Townes 

linewidth decreases with increasing power. Thus, such a hybrid system should still be the preferred 

method for making a slow-light laser. The experiment, which will be described in the next section, 

is meant to establish the value of sensitivity reduction (and therefore the factor of 𝑛𝑔) that can be 

achieved using the Raman gain by itself. 

 

5.3.1 Experimental Setup 

The Raman laser makes use of 85Rb vapor inside the same four-mirror resonator from 

Sections 5.1 and 5.2. The relevant energy levels, as shown in Figure 5.16(a), are denoted as 

follows: |1〉≡S1/2(F=2); |2〉≡S1/2(F=3); |3〉≡P1/2 manifold; |4〉≡P3/2 manifold. The optical pump 

couples |2〉 to |4〉 in order to transfer atoms from |2〉 to |1〉, which results in an effective decay 

rate from |2〉 to |1〉, as indicated in Figure 5.16(b), and therefore creates Raman population 



140 

 

inversion between these two states. The Raman pump is applied on the |1〉 → |3〉 transition with a 

detuning of 𝛥𝑅𝑃, thus producing Raman gain on the |2〉 → |3〉 transition. If a probe is applied on 

this transition with a detuning of 𝛥𝐿, then the gain is maximized under the condition of two-photon 

resonance: 𝛿 ≡ 𝛥𝐿 − 𝛥𝑅𝑃 = 0. The Raman gain linewidth, which is the range of values of 𝛿 over 

which the Raman laser operates, is on the order of 1 MHz, as demonstrated throughout Chapter 4. 

At experimental temperatures (~100°C), the optical transitions are Doppler-broadened with a 

FWHM of ~560 MHz. Since the Raman gain linewidth is much narrower than this, the probe gain 

is far higher when it is co-propagating with the Raman pump than when it is counter-propagating, 

as discussed in Section 5.1, causing the laser to operate in the same direction as the Raman pump. 

It is important to note that in Figure 5.16, the Raman pump and the optical pump are on the 

S1/2(F=2)→P1/2 and S1/2(F=3)→P3/2 transitions, respectively, resulting in lasing on the 

S1/2(F=3)→P1/2 transition. In what follows, this will be referred to as “configuration A”. However, 

a subluminal laser can just as easily be realized by placing the Raman pump and the optical pump 

on the S1/2(F=3)→P1/2 and S1/2(F=2)→P3/2 transitions, respectively, resulting in lasing on the 

S1/2(F=2)→P1/2 transition; this will be referred to as “configuration B”. It is also important to note 

that there are two hyperfine levels in the P1/2 manifold (F=2 and F=3, which are split by 

approximately 362 MHz). Throughout the rest of this chapter, 𝛥𝑅𝑃 will be defined as the Raman 

pump detuning relative to the midpoint between these two hyperfine levels. 
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Fig. 5.16: (a) Energy levels and optical fields involved in the Raman gain; (b) Energy levels and 

optical fields, with the optical pump modeled as an effective decay rate 

 

 The experimental setup is illustrated schematically in Figure 5.17. The Raman pump, 

generated from a Toptica DL-Pro 100 external cavity diode laser, is s-polarized and inserted into 

the lasing cavity using a polarizing beam splitter (PBS). It is then expelled from the cavity using 

another PBS, after passing through a vapor cell containing isotopically pure 85Rb atoms. The 

optical pumping beam, generated from a Photodigm DBR diode laser, is also s-polarized, and is 

inserted into and expelled from the cavity using the same pair of PBS’s, but in the opposite 

direction. The cavity is a square with a perimeter of one meter. A lens with focal length of 750 cm 

is used to stabilize the cavity. The minimum waist size of the lasing mode occurs exactly opposite 

the location of the lens; an iris is placed at that location to spatially filter out all transverse modes 

besides the TEM00 mode. A beam splitter (BS) diverts a small fraction of the Raman pump, which 

is combined with the Raman laser output and sent into a photodetector (PD); the resulting beat 

note has a frequency of: 

𝑓𝐵 = 𝑓𝑅𝑃 − 𝑓𝐿 = 𝛥12 − 𝛿 (5.16) 

where 𝛥12 is the hyperfine splitting between the F=2 and F=3 ground states in 85Rb, which is 

approximately 3.0357 GHz. In order to scan the cavity length, one of the cavity mirrors is attached 
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to a piezo-electric transducer (PZT). The Raman pump frequency remains fixed while the mirror 

position is scanned, which causes the beat frequency to change accordingly. The PD converts this 

beat note into an electrical signal, which is heterodyned with a stable reference signal with a 

frequency 3.2 MHz less than 𝛥12. The output of the heterodyning process therefore has a frequency 

centered around 3.2 MHz, which is then demodulated to produce a DC voltage proportional to the 

frequency. Having a 3.2 MHz central frequency enables us to distinguish between positive and 

negative values of 𝛿, provided that 𝛿 remains above -3.2 MHz (|𝛿| is less than the Raman gain 

width, which is ~1 MHz, so this should always be the case). 

 
Fig. 5.17: Schematic of the system used to measure the Raman  

laser frequency shift versus cavity length change 
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5.3.2 Experimental Results 

Two examples of plots showing input voltage (proportional to length change) versus output 

voltage (proportional to frequency shift) are shown in Figures 5.18(a) and 5.18(b). Such plots are 

used to determine the laser frequency sensitivity to length change, which is compared with the 

sensitivity of an empty cavity to determine the factor of sensitivity suppression. This factor is 

inferred to be equal to the laser group index, 𝑛𝑔. 

 
Fig. 5.18: (a) One example of an oscilloscope measurement produced by this experiment. The 

black curve is the PZT input voltage, while the curve is the demodulator output voltage; (b) 

Another example of a scope measurement. Though the peak-to-peak input voltage is the  

Same as in (a), the peak-to-peak output voltage is larger in (b), indicating higher sensitivity  

to cavity length changes, or lower suppression of sensitivity. 
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There are several experimental parameters which have the potential to affect the Sensitivity 

Suppression Factor (SSF) of the laser. Accordingly, the laser sensitivity was measured for many 

combinations of output coupler reflectivity, configuration, temperature, Raman pump power, 

optical pump power, and Raman pump detuning. Table 5.2 is a summary of the results from this 

experiment. 

 

OC Refl. 

(%) 

Configuration Temp (°C) RP Power 

(mW) 

OP Power 

(mW) 

ΔRP 

(MHz) 

SSF 

50 A 85 2.1 200 -1264 70.7 

50 A 85 2.1 200 -903 109.0 

50 A 85 2.1 200 1433 545.0 

50 A 85 2.1 200 1088 663.0 

50 A 90 2.1 200 -1553 68.0 

50 A 90 2.1 200 -1164 97.1 

50 A 90 2.1 200 -855 134.1 

50 A 90 2.1 200 2134 191.8 

50 A 90 2.1 200 1880 242.1 

50 A 90 2.1 200 -624 242.3 

50 A 90 2.1 200 1911 243.4 

50 A 90 2.1 200 1586 277.8 

50 A 90 2.1 200 1627 319.0 

50 A 90 2.1 200 1256 333.4 

50 A 90 2.1 200 998 425.9 

50 A 90 2.1 200 1310 463.0 

50 A 100 2.1 200 -2091 65.5 

50 A 100 2.1 200 -1681 80.3 

50 A 100 2.1 200 -1304 114.2 

50 A 100 2.1 200 -974 165.1 

50 A 100 2.1 200 -717 240.9 

50 A 100 2.1 200 1715 341.5 

50 A 100 2.1 200 1447 396.9 

50 A 100 2.1 200 1186 479.6 

50 A 105 2.1 200 -1660 79.8 

50 A 105 2.1 200 -1327 100.8 

50 A 105 2.1 200 -1059 138.9 
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50 A 105 2.1 200 -847 203.8 

50 A 105 2.1 200 -701 318.3 

50 A 115 2.1 200 -1585 72.3 

50 A 115 2.1 200 -1318 103.9 

50 A 115 2.1 200 -1099 146.2 

50 A 115 2.1 200 -932 193.4 

50 A 115 2.1 200 -806 254.9 

50 A 125 2.1 200 -1388 93.7 

50 A 125 2.1 200 -1225 117.8 

50 A 125 2.1 200 -1082 145.0 

50 A 125 2.1 200 -966 154.6 

50 A 125 2.1 200 -877 221.7 

80 A 90 12.2 27 -2006 8.3 

80 A 90 12.2 27 -1581 13.5 

80 A 90 12.2 27 -1199 23.2 

80 A 90 12.2 27 -897 27.5 

80 A 90 12.2 27 -681 31.9 

80 A 100 2.1 200 2013 155.7 

80 A 100 2.1 200 1589 164.0 

80 A 100 2.1 200 1817 175.5 

80 A 100 2.1 200 1340 223.9 

80 A 100 2.1 200 1092 244.8 

80 A 100 2.1 200 875 421.3 

80 A 100 12.2 58 -2335 11.6 

80 A 100 12.2 58 -1950 13.2 

80 A 100 12.2 58 -1591 17.4 

80 A 100 12.2 58 -1295 23.2 

80 A 100 12.2 58 -1044 24.6 

80 A 100 12.2 58 -865 27.5 

80 A 115 2.1 27 1243 64.1 

80 A 115 2.1 27 1389 66.3 

80 A 115 2.1 27 1102 66.8 

80 A 115 2.1 27 975 75.9 

80 A 115 2.1 27 872 81.1 

80 A 115 2.1 58 -1698 84.9 

80 A 115 2.1 58 -1455 91.3 

80 A 115 2.1 58 -1263 98.7 

80 A 115 2.1 58 -1114 123.0 

80 A 115 2.1 58 -992 131.2 

80 A 115 2.1 58 -894 174.7 
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80 A 115 12.2 58 -2326 9.7 

80 A 115 12.2 58 -1990 17.5 

80 A 115 12.2 58 -1673 18.8 

80 A 115 12.2 58 -1418 20.0 

80 A 115 12.2 58 -1042 22.6 

80 A 115 12.2 58 -1207 26.2 

80 A 115 12.2 58 -911 28.4 

80 A 115 12.2 58 -796 81.1 

80 A 130 12.2 200 -1911 20.3 

80 A 130 12.2 200 -1704 25.3 

80 A 130 12.2 200 -1519 35.3 

80 A 130 12.2 200 -1364 48.5 

80 A 130 12.2 200 -1237 53.8 

80 A 130 12.2 200 -1122 70.7 

80 A 130 12.2 200 -1027 80.7 

80 A 130 12.2 200 -944 95.2 

80 B 90 2.5 58 2216 37.8 

80 B 90 2.5 58 1791 67.3 

80 B 90 2.5 58 1390 111.3 

80 B 90 2.5 58 1030 187.9 

80 B 100 2.5 58 2546 35.9 

80 B 100 2.5 58 2146 47.1 

80 B 100 2.5 58 1753 71.3 

80 B 100 2.5 58 1395 122.0 

80 B 100 2.5 58 -1284 171.0 

80 B 100 2.5 58 -1046 187.4 

80 B 100 2.5 58 -836 244.2 

80 B 100 2.5 58 1100 247.6 

80 B 115 2.5 58 2375 56.9 

80 B 115 2.5 58 2043 82.9 

80 B 115 2.5 58 1728 126.0 

80 B 115 2.5 58 1456 184.0 

80 B 115 2.5 58 1227 276.6 

80 B 115 2.5 58 1045 376.2 

80 B 115 2.5 200 -1366 260.9 

80 B 115 2.5 200 -1198 269.1 

80 B 115 2.5 200 -766 272.5 

80 B 115 2.5 200 -887 277.8 

80 B 115 2.5 200 -668 279.0 

80 B 115 2.5 200 -1037 281.4 
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80 B 115 2.5 200 -1533 285.1 

80 B 130 2.5 58 2020 44.5 

80 B 130 2.5 58 2242 44.9 

80 B 130 2.5 58 1812 51.1 

80 B 130 2.5 58 1626 58.7 

80 B 130 2.5 58 1468 69.5 

80 B 130 2.5 550 2014 35.9 

80 B 130 2.5 550 1758 40.9 

80 B 130 2.5 550 1533 45.3 

80 B 130 2.5 550 1347 53.4 

Table 5.2: Sensitivity Suppression Factor (SSF) measured for many combinations  

of output coupler reflectivity, configuration, temperature, Raman pump power,  

optical pump power, and Raman pump detuning 

 

 Table 5.2 shows that the Raman laser exhibited values of SSF as low as 8.3 and high as 

663. Therefore, our intuition that the narrow Raman gain could result in significant sensitivity 

suppression seems plausible. In addition, the experimental parameters clearly have a significant 

effect on the value of the SSF. 

To get a better sense of how the SSF is affected by various parameters, we need to plot 

some of the data from Table 5.2. Figure 5.19 illustrates how the temperature and the Raman pump 

detuning affect the SSF. All the data in Figure 5.19 were taken with the optical fields in 

configuration B, 2.5 mW Raman pump power, 58 mW optical pump power, and 80% output 

coupler reflectivity. At a given cell temperature, the SSF evidently increases as resonance is 

approached; however, when too close to resonance, lasing cannot occur due to increased 

absorption resulting from the proximity to the optical transition. The inset figure shows the SSF 

versus temperature at 𝛥𝑅𝑃=1800 MHz and 𝛥𝑅𝑃=2100 MHz. The SSF increases as temperature 

increases from 100°C to 115°C, but then decreases from 115°C to 130°C and then to 145°C. The 

SSF is therefore maximized at some temperature, TMAX, which in this case is somewhere between 
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100°C and 130°C. In general, TMAX can depend on many factors such as Raman pump intensity, 

optical pump intensity, output coupler reflectivity, and configuration. 

In order to interpret this behavior qualitatively, we note that the number density doubles 

approximately every 10-12°C in the experimental temperature range, which was shown in Figure 

5.15. In Section 5.2, we saw that the susceptibility of a weak probe is proportional to number 

density. However, this does not hold in the lasing regime where nonlinearities occur due to high 

intensities, and where the Raman pump, optical pump, and lasing beam become mostly or 

completely absorbed when the number density becomes too high. Absorption of these beams 

causes a decrease in the total overlap between the lasing mode and the Raman and optical pumps, 

thus reducing the effective susceptibility experienced by the laser. 

 
Fig. 5.19: Measured values of SSF versus 𝛥𝑅𝑃 at four different temperatures. These data were 

then used to create the inset plots of SSF versus temperature at 𝛥𝑅𝑃=1800 and 𝛥𝑅𝑃=2100 MHz. 

 

Figure 5.20 shows one example of how the SSF and the output power are affected by the 

power of the Raman pump. The data in Figure 5.20 were taken with the energy levels in 

configuration A, 115°C cell temperature, 58 mW optical pump power, and 80% output coupler 
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reflectivity. For this set of data, the Raman pump detuning is negative. Consider first the behavior 

of the output power. With stronger Raman pump power, the output power is significantly higher, 

and lasing occurs over a wider range of 𝛥𝑅𝑃, as expected. It is also evident that in this case there 

is an optimal Raman pump detuning that produces maximum output power. This is due to the fact 

that Raman gain increases as the Raman pump approaches resonance, but so does Doppler-

broadened absorption of the Raman pump and the lasing beam. These two competing effects 

determine the detuning at which maximum lasing power is achieved. Consider next the behavior 

of the SSF. For a given value of 𝛥𝑅𝑃, the value of the SSF is approximately 4 to 6 times higher for 

the weaker Raman pump. This behavior can be understood qualitatively by noting that the width 

of the Raman gain is power broadened for a strong Raman pump, thus decreasing the slope of the 

dispersion. 

 
Fig. 5.20: SSF (left axis) and output power (right axis) vs. detuning, using  

two different values of Raman pump power 

 

Figure 5.21 compares data obtained with a 50% reflectivity output coupler (OC) to that 

obtained with an 80% reflectivity OC. The data in Figure 5.21 were taken with the energy levels 
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in configuration A, 115°C cell temperature, 200 mW optical pump power, and 2.1 mW Raman 

pump power. For all values of Raman pump detuning, the OC reflectivity does not appear to make 

a significant difference in the SSF. However, the OC with the lower reflectivity enables operation 

of the laser at a value of |𝛥𝑅𝑃| that is closer to resonance. Since SSF increases as the Raman pump 

approaches resonance, the highest achievable SSF with the 50% OC was greater than that with the 

80% OC. 

 
Fig. 5.21: SSF (left axis) and output power (right axis) vs. detuning, using 

two different output coupler reflectivities 

 

The highest SSF achieved during the experiment (with a value of 663) is presented in 

Figure 5.22, which also shows that the SSF is not symmetric with respect to the sign of 𝛥𝑅𝑃. All 

the data in Figure 5.22 were taken with the energy levels in configuration A, 200 mW optical pump 

power, 2.1 mW Raman pump power, and a 50% OC. We generally see larger values of SSF for 

positive 𝛥𝑅𝑃 than for negative 𝛥𝑅𝑃, despite the fact that the laser is able to operate closer to 

resonance for negative 𝛥𝑅𝑃. Additionally, TMAX appears to depend on the sign of 𝛥𝑅𝑃; 85°C 

yielded the lowest values of SSF for negative 𝛥𝑅𝑃, but yielded the highest values for positive 𝛥𝑅𝑃. 
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These asymmetries are possibly due to the fact that states |1〉, |2〉, and |3〉 contain five, seven, and 

twelve Zeeman sub-levels, respectively. Each sub-level has its own unique matrix element and 

therefore contributes differently to the two-photon gain and lasing processes for different signs of 

𝛥𝑅𝑃. 

 
Fig. 5.22: SSF vs. detuning, for positive and negative values  

of 𝛥𝑅𝑃, at three different temperatures 

 

 One ubiquitous effect is that for all combinations of experimental parameters, the SSF 

increases as the Raman pump approaches resonance. There are two factors which possibly cause 

this universal trend: the positive dispersion profile outside of a Doppler-broadened resonance, and 

narrowing of two-photon laser gain as 𝛥𝑅𝑃 and 𝛥𝐿 approach zero. It is not clear as to how much 

each effect contributes to the effective dispersion of the lasing beam; however, the simulations, 

described in the next section, agree with this trend. 

 There were two more parameters considered during this experiment: optical pump power 

and configuration. While the optical pump power affects the output power of the laser, it does not 



152 

 

appear to affect the SSF drastically. Meanwhile, configuration does not appear to make a 

significant difference in the output power nor the SSF. 

 As previously mentioned, the Schawlow-Townes Linewidth of a subluminal laser is 

predicted [60,61] to be reduced by a factor of 𝑛𝑔
2 relative to a conventional laser. The standard 

formula for the full-width half maximum (FWHM) Schawlow-Townes linewidth, without 

considering the effect of dispersion, is: 

𝛤𝑆𝑇 =
ℏ𝜔𝑜

2𝑃𝑂𝑈𝑇𝜏𝐶
2
 (5.17) 

where 𝜔𝑜 is the laser (angular) frequency, 𝑃𝑂𝑈𝑇 is laser output power, and 𝜏𝐶 is the empty cavity 

decay time, which is given by: 

𝜏𝐶 =
𝑅1 4⁄ 𝐿

𝑐(1 − √𝑅)
 (5.18) 

where 𝑅 is the intensity reflectivity of the output coupler. For a laser with 𝑅=0.5 and 𝑃𝑂𝑈𝑇=400 

μW, the value of 𝛤𝑆𝑇 is ~3.52 Hz. For 𝑛𝑔=663, assuming a suppression factor of 𝑛𝑔
2, the value of 

𝛤𝑆𝑇 would be ~7.5 μHz.  To reach this linewidth, the cavity must be highly stabilized in order to 

suppress all sources of classical noise. We are currently working on implementing advanced 

techniques that may enable us to reach a degree of stability high enough to measure such a small 

linewidth, directly or indirectly.  

 

5.3.3 Comparison with Simulation 

 Because of the numerous variables and interconnected processes occurring in the 

subluminal laser (AC Stark shifts, Doppler broadening, spectral hole burning, etc.), numerical 

methods are necessary to provide a quantitative model of the laser behavior. Our simulation solves 
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the single-mode laser equations and the density matrix equations in an iterative fashion until a 

steady-state solution is reached, just as it was done in the case of the superluminal DPAL. The 

MATLAB code for this simulation is included in Appendix B. 

 In the single-mode laser equations, χ is the effective susceptibility experienced by the 

lasing beam during one round trip. The gain cell in the experiment was 8 cm long while the cavity 

perimeter was 60 cm, so that only ~13% of the cavity was filled with gain. Because χ depends on 

the total number of atoms interacting with the lasing beam in one round trip, the calculation 

assumes that the gain medium fills the entire cavity with a number density equal to ~13% of the 

gain cell number density. This also means that the group index experienced by the lasing beam 

inside the vapor cell is ~7.5 times the SSF. For example, when the SSF of the subluminal laser 

was measured to be 663, the group index of the gain cell was almost 5,000. 

The Optical Bloch equation, describing the evolution of the gain medium, is: 

𝜕�̃�

𝜕𝑡
= −

𝑖

ℏ
[�̃�, �̃�] +

𝜕�̃�𝑆𝑂𝑈𝑅𝐶𝐸

𝜕𝑡
 (5.19) 

where �̃� and �̃� are the density matrix of the atoms, and the modified Hamiltonian that includes the 

effect of population decays, respectively, in the rotating wave basis. The source term accounts for 

the influx of atoms into the relevant atomic states. Figure 5.23(a) shows how the three-level system 

is modeled in configuration B. The optical pump is treated as a decay rate from |1〉 to |2〉, denoted 

as 𝛤𝑂𝑃. The lasing beam couples states |1〉 and |3〉 while the Raman pump couples states |2〉 and 

|3〉 with coupling strengths (i.e. Rabi frequencies) of 𝛺𝐿 and 𝛺𝑅𝑃, respectively. The natural decay 

rate from state |𝑖〉 to |𝑗〉 is denoted as 𝛤𝑖𝑗 (for 𝑖,𝑗 = 1, 2, 3). The susceptibility of the lasing beam, 

𝜒𝐿, is governed by the following relationship: 
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𝜒𝐿 = �̃�31 (
ℏcn

𝐼𝑆𝐴𝑇(13)𝛺𝐿
) (

𝛤31

2
)
2

 (5.20) 

where n is atomic number density and 𝐼𝑆𝐴𝑇(13) is the effective saturation intensity of the |1〉 → |3〉 

transition, which is approximately 8.35 mW/cm2. The algorithm then solves the single-mode laser 

equations and Optical Bloch equation in an iterative fashion until a steady-state solution is reached. 

To compute the SSF, this calculation must be performed for two different cavity roundtrip lengths: 

𝐿𝑜 −
𝑑𝐿

2
 and 𝐿𝑜 +

𝑑𝐿

2
, where 𝐿𝑜 is the initial cavity length and 𝑑𝐿 is a small perturbation in length. 

The sensitivity of this laser, 𝑑𝑓 𝑑𝐿⁄ , is compared to that of the empty cavity to determine the SSF. 

Figure 5.23(b) shows two examples of the simulation output. 

 
Fig. 5.23: (a) Energy levels, coupling fields, and decay rates used in the simulation, 

corresponding to configuration B; (b) The SSF is the ratio between the “empty cavity”  

slope (𝑑𝑓𝐸𝐶 𝑑𝐿⁄ ) and the laser output slope (𝑑𝑓 𝑑𝐿⁄ ). 

 

Figure 5.24 compares simulation results with experimental results for the following set of 

parameters: 2.5 mW Raman pump power, 58 mW optical pump power, 80% output coupler 

reflectivity, 115°C cell temperature, configuration B. There appears to be good qualitative match, 

showing increasing SSF as resonance is approached. There are several potential reasons why 

simulation results do not match up more accurately with experimental results. First, we use a three-
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level model, where the optical pump is treated as a decay rate. In reality, states |1〉 and |2〉 contain 

five and seven Zeeman sublevels, respectively; state |3〉 contains two hyperfine levels, which 

contain 12 Zeeman sublevels in total; state |4〉 contains four hyperfine levels, which contain 24 

Zeeman sublevels in total. Therefore, the experimental process corresponds to a 48-level system. 

The matrix used in the algorithm has dimensions of N2×N2 (where N is the number of energy 

levels), so that a 48-level system is (48/3)4=65536 times as data-intensive as a three-level system, 

which takes typically 30 seconds to solve. Another limitation is the assumption that each optical 

field couples only two energy levels. For example, the Raman pump [Fig. 5.23(a)] is assumed to 

couple states |2〉 and |3〉, but not states |1〉 and |3〉. This is not entirely true, but the Rotating-Wave 

Approximation relies on this assumption. In principle, this constraint can be circumvented by using 

the Floquet technique where the solution is made up of a truncated set of harmonics [54]; however, 

for the iterative algorithm employed here, this process would be prohibitively time-consuming. 

 

 
Fig. 5.24: SSF versus 𝛥𝑅𝑃 -- comparison between simulation and experiment 
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CHAPTER 6 

CONCLUSION 

  

In this thesis, we demonstrated a highly superluminal Diode-Pumped Alkali Laser (DPAL) 

in which the intra-cavity lasing beam experienced Raman depletion, and in which the sensitivity 

to perturbations was enhanced by a factor as high as 190 relative to a conventional laser 

interferometer. We also demonstrated a Raman laser in which the mode spacing, and more 

importantly the intra-cavity lasing beam itself, exhibited significant subluminal effects. This 

Raman laser was shown to be highly insensitive to perturbations, with reduction in sensitivity 

reaching factors as high as 663 relative to a conventional laser interferometer.  

The superluminal effect observed in the DPAL results in enhanced sensitivity which can 

be used for high-sensitivity optical metrology. On the other hand, the subluminal effect in the 

Raman laser serves as a stabilization mechanism while simultaneously reducing the quantum-

limited noise linewidth in a laser, so that a subluminal laser can be used as an ultra-precise 

frequency reference for applications such as atomic clocks. 
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APPENDIX A 

MATLAB Code for Calculating Susceptibility and Frequency  

Sensitivity of a DPAL with a Raman Induced Dip 

 

clear all; 

  

% Physical Parameters 

kB = 1.38e-23;   % Boltzmann constant 

h = 6.626e-34;   % Planck's constant 

c = 3e8;         % Speed of light 

p2den = 0.02504e27;   % Factor between pressure and number density 

amu2kg = 1.66e-27;    % Factor between amu and kg 

mC = 12.0107;         % Atomic mass of carbon in amu 

mH = 1.00794;         % Atomic mass of hydrogen in amu 

FSMCS = 7.7e-19;    % Fine-structure mixing cross section for Rb85 

  

wm85 = 2 * pi * 3.036e9;   % Rb-85: Frequency difference between level 1 and level 2 in 

radian/s 

wm87 = 2 * pi * 6.835e9;   % Rb-87: Frequency difference between level 1 and level 2 in 

radian/s 

Offset87 = - 2 * pi * 2.501e9;   % Difference between the lowest level of Rb-85 and Rb-87 

  

Temp = 120 + 273.15;   % DPAL gain cell temperature in Kelvin 

TempRaman = 100 + 273.15;   % Raman cell temperature in Kelvin 

Pressure = 760*0.06;   % Pressure of ethane in torr 

  

Isat = 66.51;  

Isat85 = 72.10;  

Isat87 = 55.64;  

IsatProbe = 62.82;  

IsatPump = 83.45;  

  

nethane = Pressure / 760 * p2den;  % Number density of ethane in meters^-3 

methane = (2 * mC + 6 * mH) * amu2kg;  % Molecular mass of ethane in kg 

vr = (3 * kB * Temp / methane)^0.5;  % Relative velocity between Rb and ethane molecules 

Gamma43 = nethane * FSMCS * vr;   % In rad/s 

Gamma34 = Gamma43 * 2 * exp(-dE / (kB * Temp));  % In rad/s 
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dE = h * c * (1/780.2 - 1/795) * 1e9;  % Energy difference between level 3 and level 4 

NumberDensityDPAL = 10^(9.318-4040/Temp)/(kB*Temp);  

NumberDensityRaman = 10^(9.318-4040/TempRaman)/(kB*TempRaman);  

n0 = NumberDensityDPAL; % Number density of gain atoms 

nRaman = 1.9796e17; % Number density of dip atoms 

  

% Cavity Related Parameters 

L = 0.72 + 3.36388e-7;   % Cavity length (meters) 

LGain = 0.1;   % Gain medium length (meters) 

LRaman = 0.1;   % Dip medium length (meters) 

Roc = 0.60;   % Reflectivity of the output coupler 

ICL = 0.10;   % Intra-cavity loss 

v0 = c * 2 * pi / (795e-9); % Laser frequency 

kwav = 2 * pi / (795e-9); % Laser wavevector 

FSR = c / L; % Free spectral range 

Finnesse = pi / ((1 - Roc)+ICL);  

GammaC = FSR / Finnesse; % Empty cavity linewidth 

Qcav = v0 / (2 * GammaC);   % Cavity quality factor 

FF = 4 * Roc /((1-Roc)^2);  

  

% Beam size 

AreaRP = pi * (1000e-6)^2; % Beam area of the Raman probe inside the Raman cell 

AreaDPAL = pi * (130e-6)^2; % Beam area of the laser inside DPAL gain cell 

AreaRS = pi * (350e-6)^2; % Beam area of the laser (Raman pump) inside the Raman cell 

  

OmegaS_R = (AreaDPAL/AreaRS)^0.5; % Rabi frequency ratio between Raman cell and DPAL 

gain cell 

  

% Decay rate between level 1 and 2 

Gamma12 = 2 * pi * 7/5*1e6;   % Decay rate from level 1 to level 2 in rad/s 

Gamma21 = 2 * pi * 1e6;       % Decay rate from level 2 to level 1 in rad/s 

  

a = 1;   % Signal fraction between 3-2 and 3-1 

b = 1;   % Pump fraction between 4-2 and 4-1 

  

tD1 = 27.7e-9;   % Lifetime of D1 (sec) 

tD2 = 26.24e-9;   % Lifetime of D2 (sec) 

GammaS = 1 / tD1;   % Decay rate of D1 in rad/s 

GammaP = 1 / tD2;   % Decay rate of D2 in rad/s 

 

GammaVAS = 2*pi*0e9; % Doppler broadening in S orbital 

GammaVAP = 2*pi*0.6e9; % Doppler broadening in P orbital 
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Asus = h/(2*pi) * c * n0 * GammaS/2 / Isat;   % Prefactor of susceptibility 

Asus85 = h/(2*pi) * c * n0 * GammaS/2 / Isat85;  % Prefactor of 85Rb susceptibility 

Asus87 = h/(2*pi) * c * n0 * GammaS/2 / Isat87; % Prefactor of 87Rb susceptibility 

AsusOP = h/(2*pi) * c * n0 * GammaP/2 / Isat;  

AsusRaman = h/(2*pi) * c * nRaman * GammaS/2 / Isat;  

AsusProbe = h/(2*pi) * c * nRaman * GammaS/2 / IsatProbe;  

AsusPump = h/(2*pi) * c * nRaman * GammaS/2 / IsatPump;  

  

% Dephasing rates 

GammaDph = 2 * pi * 20e6 * Pressure;  

GammaDph21 = GammaDph * 1;   

GammaDph43 = GammaDph * 1;  

  

R = 5e2+1;   % Number of sample points 

StepLimit = 1e2;  % Maximum trial times 

T = 1;  

N = 4;   % Number of levels in the DPAL gain medium 

NRaman = 4;  % Number of levels in the Raman cell medium 

  

PowerRP = 8.3e-3;  

IRP0 = PowerRP/AreaRP;  

OmegaRP = GammaS/2 * (PowerRP / AreaRP / IsatProbe)^0.5;  

  

CenterFreq = 2 * pi * 3.7e9;  

DeltaR = CenterFreq;  

Initial = 3e1;  

MOD = 0.22;  

  

PowerROP = 10e-3;  

AreaROP = pi*(900e-6)^2;  

OmegaROP = GammaP/2 * (PowerROP / AreaROP / Isat)^0.5; 

Nmode = round((v0+CenterFreq) * L / (2 * pi * c));  

  

PowerOP = 1.2; % DPAL optical pump power in Watts 

AreaOP = pi*(200e-6)^2; % Area of the optial pump for DPAL (m^2) 

OmegaP = ((PowerOP/AreaOP)/Isat)^0.5 * GammaP;  

  

% Initialize matrices 

H85 = zeros(N, N);  % Hamiltonnian of Rb-85 

H87 = zeros(N, N);  % Hamiltonnian of Rb-87 

HRaman = zeros(N,N); 
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Psource = zeros(N, N);  % Source term matrix 

Pdephasing = zeros(N, N);  % Dephasing term matrix 

Density = zeros(N, N);  % Density matrix 

M = zeros(N^2, N^2);   % M matrix 

Q = zeros(N, N);  % Q matrix 

MRaman = zeros(NRaman^2,NRaman^2);  

QRaman = zeros(NRaman, NRaman);  

DeltaP = 0;   % Pump detuning 

Delta10 = zeros(1,R); % DeltaRP = DeltaR.*ones(T,R); x` 

DeltaOff = zeros(1,R);  

  

Offset = 2*pi*4e8 * 0;  

  

DetuningMin =  - 2 * pi * 3e6;  

DetuningMax =  + 2 * pi * 1e6;  

DetuningSpacing = (DetuningMax - DetuningMin)/(R-1);  

Delta2 = 2.*pi.*1.2e6.*ones(1,R);  

Delta2x = (Delta2)./(2.*pi);  

DeltaRP = DetuningMin : DetuningSpacing : DetuningMax;  

DeltaRP = DeltaRP + DeltaR;  

  

A85 = zeros(N^2, R); % A vector (85Rb) 

A87 = zeros(N^2, R); % A vector (87Rb) 

ARaman = zeros(N^2, R);  

B = zeros((N^2-1), 1);  % B vector  

S = zeros((N^2-1), 1);  % S vector 

W = zeros((N^2-1), (N^2-1));  % W matrix 

BRaman = zeros((NRaman^2-1), 1);  

SRaman = zeros((NRaman^2-1), 1);     

WRaman = zeros((NRaman^2-1), (NRaman^2-1));  

Susceptibility = zeros(1, R);  

Susceptibility85 = zeros(1, R);  

Susceptibility87 = zeros(1, R);  

SusceptibilityRaman = zeros(1, R);  

ChiOP = zeros(1, R);  

SusProbe = zeros(1, R);  

TotSus = zeros(1,R);  

Gain = zeros(1,R);  

GainRaman = zeros(1,R);  
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% Lasing condition judgement parameters 

DeltaSFinal = zeros(1,R);  

OmegaSFinal = zeros(1,R);  

Fail = ones(1,R);  

Difference = zeros(T,R);  

Error = zeros(1,T);  

Position = zeros(1,T);  

FreqLength = zeros(1,T);  

OmegaSLength = zeros(1,T);  

LMin = -8e-9; 

LMax = +12e-9;  

LSpacing = (LMax - LMin) / (T-1);  

DeltaL = LMin : LSpacing : LMax;  

  

OmegaSSolve = 0;  

OmegaSLaser = 0;  

  

LasingConOmega = 0;  

CountOmega = 1;  % Count how many times tried 

  

tic;  

  

% Solving Liouville eqaution and laser equations 

for n = 1 : T 

         

    for m = 1 : R 

        DeltaSolve = 0;  

        CountDelta = 1;  

        OmegaS = Initial * GammaS;  

        LasingConOmega = 0;  

        CountOmega = 1;  

        OmegaSSolve = 0;  

        StepSize = GammaS * 5e1;  

        Cross = 0;  

             

        while CountOmega <= StepLimit && OmegaSSolve == 0 

            H85 = [-0.5i*Gamma12, 0, 1/(1+a)*OmegaS/2, 1/(1+b)*OmegaP/2; ... 

                       0, wm85-0.5i*Gamma21, a/(1+a)*OmegaS/2, b/(1+b)*OmegaP/2; ... 

1/(1+a)*OmegaS/2, a/(1+a)*OmegaS/2, -DeltaRP(n,m)-

0.5i*(GammaS+Gamma34),0                            ; ... 

                       1/(1+b)*OmegaP/2, b/(1+b)*OmegaP/2, 0, -DeltaP-0.5i*(GammaP+Gamma43)];  
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                for p = 1 : N^2 

                    for q = 1 : N^2 

  

                        % Find indices 

                        remainder = rem(p, N);  

                        if remainder == 0 

                            beta = N;  

                        else beta = remainder;  

                        end 

  

                        alpha = ( 1 + (p-beta) / N);  

                        remainder = rem(q, N); 

  

                        if remainder == 0 

                            sigma = N;  

                        else sigma = remainder;  

                        end 

  

                        eps = (1 + (q-sigma) / N);  

  

                        % Set a certain term to 1 

                        Density = zeros(N,N);  

                        Density(eps,sigma) = 1;  

  

                        Q = (H85 * Density - Density * conj(H85)) * (-1i);  

 

% Source matrix 

Psource = 

[Gamma21*Density(2,2)+(1/(1+a))*GammaS*Density(3,3)+(1/(1+b))*GammaP*Density(4,4),   

0, 0, 0; ... 

0, Gamma12*Density(1,1)+(a/(1+a))*GammaS*Density(3,3)+(b/(1+b))*GammaP*Density(4,4), 

0, 0; ... 

0, 0, Gamma43*Density(4,4), 0; ... 

0, 0, 0, Gamma34*Density(3,3)];  

 

Pdephasing = [0, -GammaDph21*Density(1,2),   -GammaDph*Density(1,3),  -

GammaDph*Density(1,4); ... 

-GammaDph21*Density(2,1), 0,  -GammaDph*Density(2,3),  -GammaDph*Density(2,4) ; ... 

-GammaDph*Density(3,1),  -GammaDph*Density(3,2),  0,  -GammaDph43*Density(3,4); ... 

-GammaDph*Density(4,1),  -GammaDph*Density(4,2), -GammaDph43*Density(4,3), 0];  
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% Add source terms and dephasing terms  

Q = Q + Psource + Pdephasing;  

M(p,q) = Q(alpha,beta);  

                    end 

                end 

  

                S = M(1 : (N^2-1), N^2 : N^2);  

                W = M(1 : (N^2-1), 1 : (N^2-1));  

  

                for x = 1 : (N - 1)  

                    W(:, ((x-1) * N + x)) = W(:, ((x-1) * N + x)) - S;   

                end 

  

                B = - W \ S;  

                A85(N^2, m) = 1;  

                A85(1:(N^2-1), m) = B;  

 

                for y = 1 : (N-1) 

                    A85(N^2, m) = A85(N^2, m) - B(((y-1) * N + y), 1);  

                end 

  

                Susceptibility85(1,m) = - Asus85 * (GammaS/2 / OmegaS) * ...,      

 

% Calculate susceptibility 

(A85(9,m) + A85(10,m));  

 

H87 = [Offset87-0.5i*Gamma12, 0, 1/(1+a)*OmegaS/2, 1/(1+b)*OmegaP/2; ... 

0, Offset87+wm87-0.5i*Gamma21, a/(1+a)*OmegaS/2, b/(1+b)*OmegaP/2; ... 

1/(1+a)*OmegaS/2, a/(1+a)*OmegaS/2, -DeltaRP(n,m)-0.5i*(GammaS+Gamma34), 0; ... 

1/(1+b)*OmegaP/2, b/(1+b)*OmegaP/2, 0, -DeltaP-0.5i*(GammaP+Gamma43)];  

  

                for p = 1 : N^2 

                    for q = 1 : N^2 

  

                        % Find indices 

                        remainder = rem(p, N);  

 

                        if remainder == 0  

                            beta = N;  

                        else beta = remainder;  

                        end 
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                        alpha = ( 1 + (p-beta) / N);  

                        remainder = rem(q, N); 

  

                        if remainder == 0 

                            sigma = N;  

                        else sigma = remainder;  

                        end 

  

                        eps = (1 + (q-sigma) / N);  

  

                        % Set a certain term to 1 

 

                        Density = zeros(N,N);  

                        Density(eps,sigma) = 1;  

 

                        Q = (H87 * Density - Density * conj(H87)) * (-1i);  

  

% Source matrix 

Psource = 

[Gamma21*Density(2,2)+(1/(1+a))*GammaS*Density(3,3)+(1/(1+b))*GammaP*Density(4,4),   

0,  0,  0; ... 

0, Gamma12*Density(1,1)+(a/(1+a))*GammaS*Density(3,3)+(b/(1+b))*GammaP*Density(4,4),   

0, 0; ... 

0,  0,  Gamma43*Density(4,4), 0; ... 

0,  0,  0,  Gamma34*Density(3,3)];  

  

Pdephasing = [0, -GammaDph21*Density(1,2), -GammaDph*Density(1,3), 

GammaDph*Density(1,4); ... 

-GammaDph21*Density(2,1), 0, -GammaDph*Density(2,3), -GammaDph*Density(2,4); ... 

-GammaDph*Density(3,1), -GammaDph*Density(3,2), 0, -GammaDph43*Density(3,4); ... 

-GammaDph*Density(4,1), -GammaDph*Density(4,2), -GammaDph43*Density(4,3), 0];  

  

% Add source terms and dephasing terms  

Q = Q + Psource + Pdephasing;  

M(p,q) = Q(alpha,beta);  

  

                    end 

                end 

  

                S = M(1 : (N^2-1), N^2 : N^2);  

                W = M(1 : (N^2-1), 1 : (N^2-1));  
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                for x = 1 : (N - 1) 

                    W(:, ((x-1) * N + x)) = W(:, ((x-1) * N + x)) - S;  

                end 

  

                B = - W \ S;  

                A87(N^2, m) = 1;  

                A87(1:(N^2-1), m) = B;  

  

                for y = 1 : (N-1) 

                    A87(N^2, m) = A87(N^2, m) - B(((y-1) * N + y), 1); 

                end 

  

                Susceptibility87(1,m) = - Asus87 * (GammaS/2 / OmegaS) * ...,           

 

 % Calculate susceptibility 

                (A87(9,m) + A87(10,m));  

                Susceptibility(1,m) = (Susceptibility85(1,m) .* 0.72 + ..., 

                Susceptibility87(1,m) .* 0.28);  

  

% Raman Cell Hamiltonian 

HRaman = [-0.5i*(MOD*Gamma12), 0, OmegaRP/2, OmegaROP/2  ; ... 

0, -(DeltaR+Delta2(1,m))+DeltaRP(n,m)-0.5i*(MOD*Gamma21), OmegaS*OmegaS_R/2, 0; ... 

OmegaRP/2, OmegaS*OmegaS_R/2, -(DeltaR+Delta2(1,m))-0.5i*(GammaS+GammaVAS), 0;... 

OmegaROP/2, 0,  0, -0.5i*(GammaP+GammaVAP)]; 

  

                for p = 1 : NRaman^2 

                    for q = 1 : NRaman^2 

  

                        % Find indices 

                        remainder = rem(p, NRaman);  

  

                        if remainder == 0 

                            beta = NRaman;  

                        else beta = remainder;  

                        end 

  

                        alpha = ( 1 + (p-beta) / NRaman);  

                        remainder = rem(q, NRaman); 
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                        if remainder == 0 

                            sigma = NRaman;  

                        else sigma = remainder;  

                        end 

 

                        eps = (1 + (q-sigma) / NRaman);  

  

                        % Set a certain term to 1 

                        densityRaman = zeros(NRaman,NRaman);  

                        densityRaman(eps,sigma) = 1;  

  

                        QRaman = (HRaman * densityRaman - densityRaman * conj(HRaman)) * (-1i);  

  

% Source matrix 

PsourceRaman = 

[(MOD*Gamma21)*densityRaman(2,2)+(1/(1+a))*(GammaS+GammaVAS)*densityRaman(3,3

)+(1/(1+b))*(GammaP+GammaVAP)*densityRaman(4,4), 0, 0, 0; ... 

0, 

(MOD*Gamma12)*densityRaman(1,1)+(a/(1+a))*(GammaS+GammaVAS)*densityRaman(3,3)

+(b/(1+b))*(GammaP+GammaVAP)*densityRaman(4,4), 0, 0; ... 

0, 0, 0, 0; ... 

0, 0, 0, 0]; 

  

% Add source terms and dephasing terms  

QRaman = QRaman + PsourceRaman;  

MRaman(p,q) = QRaman(alpha,beta);  

                    end 

                end 

  

                SRaman = MRaman(1 : (NRaman^2-1), NRaman^2 : NRaman^2);  

                WRaman = MRaman(1 : (NRaman^2-1), 1 : (NRaman^2-1));  

  

                for x = 1 : (NRaman - 1) 

                    WRaman(:, ((x-1) * NRaman + x)) = WRaman(:, ((x-1) * NRaman + x)) - SRaman;  

                end 

 

                BRaman = - WRaman \ SRaman; 

                ARaman(NRaman^2, m) = 1;  

                ARaman(1:(NRaman^2-1), m) = BRaman;  
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                for y = 1 : (NRaman-1) 

                    ARaman(NRaman^2, m) = ARaman(NRaman^2, m) - BRaman(((y-1) * NRaman + 

y), 1); 

                end 

  

                    SusceptibilityRaman(1,m) = - AsusProbe * ((1/(1+a))*GammaS / OmegaS) * 

ARaman(10,m);  

                    SusProbe(1,m) = - AsusPump * ((1/(1+a))*GammaS / OmegaRP) * ARaman(9,m);  

  

TotSus(1,m) = Susceptibility(1,m) * LGain / L + SusceptibilityRaman(1,m) * LRaman / L;  

                Gain(1,m) = -imag(TotSus(1,m)) * kwav * L;  

                GainRaman(1,m) = -imag(SusceptibilityRaman(1,m)) * kwav * L; 

 

                if abs(imag(TotSus(1,m)) + (1/Qcav)) < 1e-9 * abs(1/Qcav) 

                    OmegaSFinal(1,m) = OmegaS;  

                    OmegaSSolve = 1;  

                    LasingConOmega = 1;  

                    Fail(1,m) = 0;   

  

                else if (-imag(TotSus(1,m)) < (1/Qcav)) && (LasingConOmega == 0) 

                    OmegaSFinal(1,m) = 0;  

                    OmegaSSolve = 1;  

                    Fail(1,m) = 0;   

  

                else if (-imag(TotSus(1,m)) > (1/Qcav)) && (Cross == 1) 

                    StepSize = - StepSize/2;  

                    LasingConOmega = 1;  

                    Cross = 0;  

  

                else if (-imag(TotSus(1,m)) < (1/Qcav)) && (Cross == 0) 

                    StepSize = - StepSize/2;  

                    LasingConOmega = 1;  

                    Cross = 1;  

  

                else if (-imag(TotSus(1,m)) > (1/Qcav)) && (Cross == 0) 

                    LasingConOmega = 1;  

                    end 

                    end 

                    end 

                    end 

                end 
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                OmegaS = OmegaS + StepSize; 

                CountOmega = CountOmega + 1;  

                 

            end 

             

            Wcav = 2 * pi * Nmode * c / (L); 

            Delta10(1,m) = Wcav/(1 + real(TotSus(1,m)) / 2); 

            Difference(n,m) = v0 + DeltaRP(n,m) - Delta10(1,m); 

         

    end 

    Lx = 2 * pi * Nmode * c ./ (DeltaRP + v0) ./ (1 + real(TotSus)./2);  

    L0 = Lx(1,(R + 1)/ 2);  

    dL = Lx - L0;  

end 

  

Time = toc;  

  

if Time < 60   

    TimeStr = [num2str(round(Time)) ' sec'];  

    display(TimeStr);  

     

else if Time < 3600 

    TimeMin = floor(Time/60);  

    TimeSec = round(Time - TimeMin*60);  

    TimeStr = [num2str(TimeMin) ' min ' num2str(TimeSec) ' sec'];  

    display(TimeStr);  

     

else  

    TimeHour = floor(Time/3600);  

    TimeMin = floor((Time-TimeHour*3600)/60);  

    TimeSec = round(Time -TimeHour*3600 - TimeMin*60);  

    TimeStr = [num2str(TimeHour) ' hour ' num2str(TimeMin) ' min ' num2str(TimeSec) ' sec'];  

    display(TimeStr);  

    end 

end 

 

Failure = sum(Fail);  

display(Failure);  

  

Delta1 = (DeltaRP-DeltaR);  

Delta1x = Delta1./(2.*pi);  
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Intensity = (1-Roc) .* Isat .* (OmegaSFinal ./ (GammaS/2)).^2;  % Laser output intensity in 

W/(m^2) 

Power = Intensity .* AreaDPAL .* 1e3;  % Laser power in mW 

IRP = IRP0 .* exp(-imag(SusProbe).*kwav.*LRaman);  

PowerProbe = IRP.* AreaRP .* 1e3;  

  

df = zeros(T,R);  

Enhancement = zeros(T,R);  

Empty = -2*pi*Nmode*c/(L^2);  

df(1,2:R) = DetuningSpacing./diff(dL);  

df(1,1) = df(1,2);  

Enhancement(1,:) = df(1,:)./Empty;  

 

% Plot susceptibility and output power 

figure(1);  

plot(Delta2, DeltaSx);  

xlabel('Delta2');  

ylabel('{\delta}_{AOM}');  

grid on;  

 

figure(2);  

plot(dL,Delta1x,'Color', 'k','Linewidth',3);  

xlabel('{\Delta}L');  

ylabel('{\delta}_1');  

grid on;  

  

figure(3);  

plot(Delta1x,Enhancement);  

xlabel('{\delta}_{1}');  

ylabel('Enhancement');  

grid on; 
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APPENDIX B 

MATLAB Code for Calculating Susceptibility and Frequency Sensitivity of a Raman Laser 

 

clear all; 

  

% Parameters 

kB = 1.38e-23;  % Boltzmann constant 

h = 6.626e-34;  % Planck's constant 

c = 3e8;            % Speed of light 

mRb = 85.4678;  

p2den = 0.02504e27;% Factor between pressure and number density 

amu2kg = 1.66e-27;  % Factor between amu and kg 

  

wm85 = 2 * pi * 3.036e9; % Rb-85: Frequency difference between level 1 and level 2 in radian/s 

wm87 = 2 * pi * 6.835e9;  % Rb-87: Frequency difference between level 1 and level 2 in 

radian/s 

HF85 = 361.58e6; 

HF87 = 814.5e6;  

Ratio = 0.72;   % Percentage of 85Rb atoms  

  

IsatD1 = 66.76;    % Saturation intensity (D1 line) in W/(m^2) 

IsatD2 = 43.283;  % Saturation intensity (D2 line) in W/(m^2) 

  

% Cavity related 

L = 1+7.06e-8;  % Cavity length (meters) 

LGain = 0.10;  % Length of gain cell (meters) 

Roc = 0.90;     % Reflectivity of the output coupler 

  

v0 = c * 2 * pi / (795e-9);  

Lambda = 795e-9;  

kwav = 2 * pi / (795e-9);  

  

kD1 = 2 * pi / (795e-9);  

kD2 = 2 * pi / (780e-9);  

  

Num = round(v0 * L / (2 * pi * c));  

FSR = c / L;  

Finnesse = pi / (1 - Roc); 
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GammaC = FSR / Finnesse;  

Qcav = v0 / (2 * GammaC);   % Cavity quality factor 

  

% Decay rate between level 1 and 2 

Gamma12_85 = 2 * pi * 1e6;   % Decay rate from level 1 to level 2 in rad/s 

Gamma21_85 = 2 * pi * 1e6;   % Decay rate from level 2 to level 1 in rad/s 

  

tD1 = 27.7e-9;    % Lifetime of D1 (sec) 

tD2 = 26.24e-9;  % Lifetime of D2 (sec) 

GammaD1 = 1 / tD1;   % Decay rate of D1 in rad/s 

GammaD2 = 1 / tD2;   % Decay rate of D2 in rad/s 

  

R = 11;   % Number of sample points 

T = 1;  

G = 101;  

N = 4;    % Number of levels 

StepLimit = 1e0;   % Maximum trial times 

  

n0 = 8e17;         

Temp = 273.15 + 100;  

AsusD1 = h/(2*pi) * c * n0 * 0.5 * GammaD1 / IsatD1;  % Used for calculating susceptibility 

(D1) 

AsusD2 = h/(2*pi) * c * n0 * 0.5 * GammaD2 / IsatD2;  % Used for calculating susceptibility 

(D2) 

  

% Initialize matrices 

H85 = zeros(N, N);    % Hamiltonnian of 85Rb 

H87 = zeros(N, N);    % Hamiltonnian of 87Rb 

Psource = zeros(N, N);   % Source term matrix 

density = zeros(N, N);    % Density matrix 

M = zeros(N^2, N^2);    % M matrix 

Q = zeros(N, N);       % Q matrix 

  

A85 = zeros(N^2, R);    % A vector (85Rb) 

A87 = zeros(N^2, R);    % A vector (87Rb) 

B = zeros((N^2-1), 1);   % B vector 

S = zeros((N^2-1), 1);   % S vector 

W = zeros((N^2-1), (N^2-1));   % W matrix 

  

Susceptibility85 = zeros(1, R);  

TotSus = zeros(1,R);  

NumLasing = zeros(1,R);  
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% Doppler broadening 

if G == 1 

     

    Velocity = 0;  

    VWeight = 1;  

  

else 

     

    VSigma = (2*kB*Temp/(mRb*amu2kg))^0.5;  

  

    VMin = - 2*VSigma;  

    VMax = + 2*VSigma;  

    VSpacing = (VMax - VMin)/(G-1);  

    Velocity = VMin : VSpacing : VMax;  

  

    VDis = exp(-Velocity.^2./VSigma.^2);  

    VNor = sum(VDis);  

    VWeight = 1./VNor.*VDis;  

     

end 

  

DeltaVD2 = kD2.*Velocity;  

DeltaVD1 = 1.*kD1.*Velocity;  

  

DiaRS = 950e-6;  

DiaRP = 950e-6;  

DiaOP = 950e-6;  

  

PowerRP = 12e-3;  

OmegaRP = GammaD1 * (PowerRP / (pi*(DiaRP/2)^2 * IsatD1)).^0.5;  

  

PowerOP = 20e-6;  

OmegaOP = GammaD2 * (PowerOP / (pi*(DiaOP/2)^2 * IsatD2)).^0.5;  

  

Initial = 1e-1;  

OmegaRS = 1e-1 * GammaD1;   % Rabi frequency of Raman signal 

  

% Define detuning 

RamanDetuning = + 1e9 + 7.72e7;  

CenterFreq = RamanDetuning;  

  

LSPg = OmegaRP^2/(4*2*pi*RamanDetuning);  
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DetuningMin = + 2*pi*RamanDetuning - 2*pi*0.9e6;  

DetuningMax = + 2*pi*RamanDetuning - 2*pi*0.6e6;  

DetuningSpacing = (DetuningMax - DetuningMin)/(R-1);  

DeltaRP = + 2*pi*RamanDetuning - 0*LSPg;  

DeltaRS = DetuningMin : DetuningSpacing : DetuningMax;  

DeltaRSx = DeltaRS ./(2*pi) - RamanDetuning;  

  

% Lasing condition judgement parameters 

DeltaSFinal = zeros(1,R);  

OmegaSFinal = zeros(1,R);  

Fail = zeros(1,R);  

Difference = zeros(1,R);  

  

NumVec = zeros(1,T);  

Error = zeros(1,T);  

Position = zeros(1,T);  

FreqSol = zeros(1,T);  

OmegaSSol = zeros(1,T);  

  

OmegaSSolve = 0;  

OmegaSLaser = 0;  

  

LasingConOmega = 0;  

CountOmega = 1;  

  

tic;  

  

for n = 1 : T 

    for m = 1 : R 

        OmegaRS = Initial * GammaD1;   % D1 rabi frequency 

        OmegaSSolve = 0;  

        CountOmega = 1;  

        Cross = 0;  

        LasingConOmega = 0;  

        StepSize = GammaD1 * 1e0;  

  

        while CountOmega <= StepLimit && OmegaSSolve == 0  

            TotSus(1,m) = 0;  
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            for g = 1 : G 

                H85 = [-0.5i*Gamma12_85, 0, OmegaRS/2, OmegaOP/2; ... 

                0, -DeltaRS(1,m)+DeltaRP-0.5i*Gamma21_85, OmegaRP/2, 0; ... 

                OmegaRS/2, OmegaRP/2, -DeltaRS(1,m)-DeltaVD1(1,g)-0.5i*GammaD1, 0; ... 

                OmegaOP/2, 0, 0, -DeltaVD2(1,g)-0.5i*GammaD2];  

  

                % Deploy N-level algorithm 

                for p = 1 : N^2 

                    for q = 1 : N^2 

  

                        % Find indices 

                        remainder = rem(p, N);  

                        if remainder == 0 

                            beta = N;  

  

                        else beta = remainder;  

                        end 

  

                        alpha = ( 1 + (p-beta) / N);  

                        remainder = rem(q, N); 

  

                        if remainder == 0 

                            sigma = N;  

  

                        else sigma = remainder;  

                        end 

  

                        eps = (1 + (q-sigma) / N);  

  

                        % Set a certain term to 1 

                        density = zeros(N,N);  

                        density(eps,sigma) = 1;  

  

                        Q = (H85 * density - density * conj(H85)) * (-1i);  

  

                        % Source matrix 

                        Psource = 

[Gamma21_85*density(2,2)+0.5*GammaD1*density(3,3)+0.5*GammaD2*density(4,4),  0,  0,   

0; ... 

0, Gamma12_85*density(1,1)+0.5*GammaD1*density(3,3)+0.5*GammaD2*density(4,4), 0, 0; 

... 
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0, 0, 0, 0; ... 

0, 0, 0, 0 ];  

  

% Add source terms  

                        Q = Q + Psource;  

                        M(p,q) = Q(alpha,beta);  

                    end 

                end 

  

                S = M(1 : (N^2-1), N^2 : N^2);  

                W = M(1 : (N^2-1), 1 : (N^2-1));  

  

                for x = 1 : (N - 1) 

                    W(:, ((x-1) * N + x)) = W(:, ((x-1) * N + x)) - S;  

                end 

  

                B = - W \ S;  

                A85(N^2, m) = 1;  

                A85(1:(N^2-1), m) = B;  

  

                for y = 1 : (N-1) 

                    A85(N^2, m) = A85(N^2, m) - B(((y-1) * N + y), 1); 

                end 

  

                Susceptibility85(1,m) = - AsusD1 * (0.5*GammaD1 / OmegaRS)* A85(9,m);  

                TotSus(1,m) = TotSus(1,m) + VWeight(1,g) * Susceptibility85(1,m) * LGain / L;  

            end 

                                               

            if abs(imag(TotSus(1,m)) + (1/Qcav)) < 1e-10 * abs(1/Qcav) 

                OmegaSFinal(1,m) = OmegaRS;  

                OmegaSSolve = 1;  

                LasingConOmega = 1;  

                NumLasing(1,m) = round((v0+DeltaRS(1,m)) * L * (1+real(TotSus(1,m))/2) / (2 * pi * 

c));  

                 

                elseif (-imag(TotSus(1,m)) < (1/Qcav)) && (LasingConOmega == 0) 

                OmegaSFinal(1,m) = 0;  

                OmegaSSolve = 1;  

                 

                elseif (-imag(TotSus(1,m)) > (1/Qcav)) && (Cross == 1) 

                StepSize = - StepSize/5;  

                Cross = 0;  
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                elseif (-imag(TotSus(1,m)) < (1/Qcav)) && (Cross == 0) 

                StepSize = - StepSize/5;  

                LasingConOmega = 1;  

                Cross = 1;  

                 

                elseif (-imag(TotSus(1,m)) > (1/Qcav)) && (Cross == 0) 

                LasingConOmega = 1;       

            end 

         

            CountOmega = CountOmega + 1;  

            OmegaRS = OmegaRS + StepSize;   

        end 

                 

        if OmegaSSolve == 0     

            Fail(1,m) = 1;  

        end 

         

        NumVec(1,n) = round((1 + real(TotSus(1,m)) ./ 2) .*(v0+DeltaRS(1,m)) .* L ./ (2 .* pi .* 

c));  

        Wcav = 2 * pi * NumVec(1,n) * c / L; 

        Difference(1,m) = Wcav - (1 + real(TotSus(1,m)) / 2) * ..., 

        (v0 + DeltaRS(1,m)); 

         

    end 

  

    [Error(1,n), Position(1,n)] = min(abs(Difference));  

  

    FreqSol(1,n) = DeltaRS(1, Position(1,n));  

    OmegaSSol(1,n) = OmegaSFinal(1, Position(1,n));  

     

end 

  

Power = IsatD1.* (1-Roc) .* (OmegaSSol./GammaD1).^2.*pi*(DiaRS/2)^2.*1e6;  

  

Lx = 2 * pi * Num * c ./ (DeltaRS + v0) ./ (1 + real(TotSus)./2);  

Lcen = Lx(1,(R + 1)/ 2);  

dL = Lx - Lcen;  

  

LxEmpty = 2 * pi * Num * c ./ (DeltaRS + v0);  

L0Empty = LxEmpty(1,(R + 1)/ 2);  

dLEmpty = LxEmpty - L0Empty;  
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Empty = -2*pi*Num*c/(L^2);  

Enhancement = (dL(end) - dL(1))/(dLEmpty(end) - dLEmpty(1));  

TimeN = toc;  

  

if TimeN < 60  

    Time = [num2str(round(TimeN)) ' sec'];  

    display(Time);  

     

else if TimeN < 3600 

    TimeMin = floor(TimeN/60);  

    TimeSec = round(TimeN - TimeMin*60);  

    Time = [num2str(TimeMin) ' min ' num2str(TimeSec) ' sec'];  

    display(Time);  

     

else  

    TimeHour = floor(TimeN/3600);  

    TimeMin = floor((TimeN-TimeHour*3600)/60);  

    TimeSec = round(TimeN -TimeHour*3600 - TimeMin*60);  

    Time = [num2str(TimeHour) ' hour ' num2str(TimeMin) ' min ' num2str(TimeSec) ' sec'];  

    display(Time);  

    end 

end 

  

display(['The power is ' num2str(Power) ' uW.']); 

display(['The slow light enhancement is ' num2str(Enhancement) '.']); 

  

% Plot real and imaginary parts of susceptibility 

figure(1);  

subplot(2,1,1); 

plot(DeltaRSx, -imag(TotSus),DeltaRSx, ones(1,R)./Qcav,DeltaRSx(1,Position).*ones(1,R),-

imag(TotSus)); 

set(gca,'FontName','Times New Roman','FontSize',16);  

xlabel('Lasing Frequency','FontName','Times New Roman','FontSize',20);  

ylabel('-{\chi}''''','FontName','Times New Roman','FontSize',20);  

grid on;  

  

subplot(2,1,2); 

plot(DeltaRSx, real(TotSus)); 

set(gca,'FontName','Times New Roman','FontSize',16);  

xlabel('Lasing Frequency','FontName','Times New Roman','FontSize',20);  

ylabel('-{\chi}''','FontName','Times New Roman','FontSize',20);  

grid on; 


